The nonlinear PCA criterion in blind source separation: Relations with other approaches

被引:59
|
作者
Karhunen, J [1 ]
Pajunen, P [1 ]
Oja, E [1 ]
机构
[1] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 Espoo, Finland
关键词
blind separation; nonlinear PCA; least squares; unsupervised learning; neural networks;
D O I
10.1016/S0925-2312(98)00046-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present new results on the nonlinear principal component analysis (PCA) criterion in blind source separation (BSS). We derive the criterion in a form that allows easy comparisons with other BSS and independent component analysis (ICA) contrast functions like cumulants, Bussgang criteria, and information theoretic contrasts. This clarifies how the nonlinearity should be chosen optimally. We also discuss the connections of the nonlinear PCA learning rule with the Bell-Sejnowski algorithm and the adaptive EASI algorithm. Furthermore, we show that a nonlinear PCA criterion can be minimized using least-squares approaches, leading to computationally efficient and fast converging algorithms. The paper shows that nonlinear PCA is a versatile starting point for deriving different kinds of algorithms for blind signal processing problems. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:5 / 20
页数:16
相关论文
共 50 条
  • [21] A new criterion for second order cyclostationary blind source separation
    Keziou, Amor
    Mohamed, Mohamed Salem Ould
    Fenniri, Hassan
    Delaunay, Georges
    SCS: 2008 2ND INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS, 2008, : 158 - +
  • [22] A Nonlinear state space approach to Nonlinear blind source separation
    Zhang, Jingyi
    Woo, W. L.
    Dlay, S. S.
    PROCEEDINGS OF THE 2007 15TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, 2007, : 547 - +
  • [23] Temporal filtering and oriented PCA neural networks for blind source separation
    Diamantaras, KI
    Papadimitriou, T
    2003 IEEE XIII WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING - NNSP'03, 2003, : 369 - 378
  • [24] Geometrical understanding of the PCA subspace method for overdetermined blind source separation
    Winter, S
    Sawada, H
    Makino, S
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SPEECH II; INDUSTRY TECHNOLOGY TRACKS; DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS; NEURAL NETWORKS FOR SIGNAL PROCESSING, 2003, : 769 - 772
  • [25] Geometrical interpretation of the PCA subspace approach for overdetermined blind source separation
    Winter, S.
    Sawada, H.
    Makino, S.
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1) : 1 - 11
  • [26] Geometrical Interpretation of the PCA Subspace Approach for Overdetermined Blind Source Separation
    S. Winter
    H. Sawada
    S. Makino
    EURASIP Journal on Advances in Signal Processing, 2006
  • [27] Adaptive and heuristic approaches for nonlinear source separation
    Rojas, F
    Alvarez, MR
    Salmerón, M
    Puntonet, CG
    Martin-Clemente, R
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 720 - 725
  • [28] A survey of artificial intelligence approaches in blind source separation
    Ansari, Sam
    Alatrany, Abbas Saad
    Alnajjar, Khawla A.
    Khater, Tarek
    Mahmoud, Soliman
    Al-Jumeily, Dhiya
    Hussain, Abir Jaafar
    NEUROCOMPUTING, 2023, 561
  • [29] Blind Source Separation Approaches for Exoplanet Signal Extraction
    Savransky, Dmitry
    TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS VII, 2015, 9605
  • [30] Blind inversion of Wiener system for single source using nonlinear blind source separation
    Sun, ZL
    Huang, DS
    Zheng, CH
    Shang, L
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1235 - 1238