The nonlinear PCA criterion in blind source separation: Relations with other approaches

被引:59
作者
Karhunen, J [1 ]
Pajunen, P [1 ]
Oja, E [1 ]
机构
[1] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 Espoo, Finland
关键词
blind separation; nonlinear PCA; least squares; unsupervised learning; neural networks;
D O I
10.1016/S0925-2312(98)00046-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present new results on the nonlinear principal component analysis (PCA) criterion in blind source separation (BSS). We derive the criterion in a form that allows easy comparisons with other BSS and independent component analysis (ICA) contrast functions like cumulants, Bussgang criteria, and information theoretic contrasts. This clarifies how the nonlinearity should be chosen optimally. We also discuss the connections of the nonlinear PCA learning rule with the Bell-Sejnowski algorithm and the adaptive EASI algorithm. Furthermore, we show that a nonlinear PCA criterion can be minimized using least-squares approaches, leading to computationally efficient and fast converging algorithms. The paper shows that nonlinear PCA is a versatile starting point for deriving different kinds of algorithms for blind signal processing problems. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:5 / 20
页数:16
相关论文
共 23 条
[1]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[2]   Infomax and maximum likelihood for blind source separation [J].
Cardoso, JF .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) :112-114
[3]   Equivariant adaptive source separation [J].
Cardoso, JF ;
Laheld, BH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) :3017-3030
[4]  
CARDOSO JF, 1998, ADAPTIVE UNSUPERVISE, pCH2
[5]   Robust neural networks with on-line learning for blind identification and blind separation of sources [J].
Cichocki, A ;
Unbehauen, R .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1996, 43 (11) :894-906
[6]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[7]  
GIROLAMI M, 1996, UNPUB INT J NEURAL S
[8]  
Haykin S., 1991, ADAPTIVE FILTER THEO
[9]  
HAYKIN S, 1994, BLIND DECONVOLUTION
[10]   BLIND SEPARATION OF SOURCES .1. AN ADAPTIVE ALGORITHM BASED ON NEUROMIMETIC ARCHITECTURE [J].
JUTTEN, C ;
HERAULT, J .
SIGNAL PROCESSING, 1991, 24 (01) :1-10