The nonlinear PCA criterion in blind source separation: Relations with other approaches

被引:59
|
作者
Karhunen, J [1 ]
Pajunen, P [1 ]
Oja, E [1 ]
机构
[1] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 Espoo, Finland
关键词
blind separation; nonlinear PCA; least squares; unsupervised learning; neural networks;
D O I
10.1016/S0925-2312(98)00046-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present new results on the nonlinear principal component analysis (PCA) criterion in blind source separation (BSS). We derive the criterion in a form that allows easy comparisons with other BSS and independent component analysis (ICA) contrast functions like cumulants, Bussgang criteria, and information theoretic contrasts. This clarifies how the nonlinearity should be chosen optimally. We also discuss the connections of the nonlinear PCA learning rule with the Bell-Sejnowski algorithm and the adaptive EASI algorithm. Furthermore, we show that a nonlinear PCA criterion can be minimized using least-squares approaches, leading to computationally efficient and fast converging algorithms. The paper shows that nonlinear PCA is a versatile starting point for deriving different kinds of algorithms for blind signal processing problems. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:5 / 20
页数:16
相关论文
共 50 条
  • [1] Blind source separation and tracking using nonlinear PCA criterion: A least-squares approach
    Karhunen, J
    Pajunen, P
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 2147 - 2152
  • [2] Neural network approaches to nonlinear blind source separation
    Gao, P
    Woo, WL
    Dlay, SS
    ISSPA 2005: THE 8TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 78 - 81
  • [3] Adaptive nonlinear PCA algorithms for blind source separation without prewhitening
    Zhu, XL
    Zhang, XD
    Ding, ZZ
    Jia, Y
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (03) : 745 - 753
  • [4] A fixed-point nonlinear PCA algorithm for blind source separation
    Zhu, XL
    Ye, JM
    Zhang, XD
    NEUROCOMPUTING, 2005, 69 (1-3) : 264 - 272
  • [5] An algorithm based on nonlinear PCA and regulation for blind source separation of convolutive mixtures
    Ma, Liyan
    Li, Hongwei
    BIO-INSPIRED COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2007, 4688 : 1 - +
  • [6] Using kernel PCA for initialisation of variational Bayesian nonlinear blind source separation method
    Honkela, A
    Harmeling, S
    Lundqvist, L
    Valpola, H
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 790 - 797
  • [7] Nonlinear innovation to blind source separation
    Shi, Zhenwei
    Zhang, Changshui
    NEUROCOMPUTING, 2007, 71 (1-3) : 406 - 410
  • [8] On blind source separation using mutual information criterion
    Luo, ZQ
    Lu, J
    MATHEMATICAL PROGRAMMING, 2003, 97 (03) : 587 - 603
  • [9] On blind source separation using mutual information criterion
    Zhi-Quan Luo
    Jun Lu
    Mathematical Programming, 2003, 97 : 587 - 603
  • [10] Maximization of component disjointness:: A criterion for blind source separation
    Anemueller, Joern
    Independent Component Analysis and Signal Separation, Proceedings, 2007, 4666 : 325 - 332