Algebraic convergence for anisotropic edge elements in polyhedral domains

被引:30
作者
Buffa, A
Costabel, M
Dauge, M
机构
[1] CNR, IMATI, I-27100 Pavia, Italy
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
D O I
10.1007/s00211-005-0607-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study approximation errors for the h-version of Nedelec edge elements on anisotropically refined meshes in polyhedra. Both tetrahedral and hexahedral elements are considered, and the emphasis is on obtaining optimal convergence rates in the H(curl) norm for higher order elements. Two types of estimates are presented: First, interpolation error estimates for functions in anisotropic weighted Sobolev spaces. Here we consider not only the H(curl)-conforming Nedelec elements, but also the H(div)-conforming Raviart-Thomas elements which appear naturally in the discrete version of the de Rham complex. Our technique is to transport error estimates from the reference element to the physical element via highly anisotropic coordinate transformations. Second, Galerkin error estimates for the standard H(curl) approximation of time harmonic Maxwell equations. Here we use the anisotropic weighted Sobolev regularity of the solution on domains with three-dimensional edges and corners. We also prove the discrete compactness property needed for the convergence of the Maxwell eigenvalue problem. Our results generalize those of [40] to the case of polyhedral corners and higher order elements.
引用
收藏
页码:29 / 65
页数:37
相关论文
共 44 条
  • [1] The maximum angle condition for mixed and nonconforming elements:: Application to the Stokes equations
    Acosta, G
    Duránn, RG
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 18 - 36
  • [2] ALSHENK N, 1994, MATH COMPUT, V63, P105, DOI 10.1090/S0025-5718-1994-1226816-5
  • [3] Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
  • [4] 2-B
  • [5] [Anonymous], 1988, LECT NOTES MATH, DOI DOI 10.1007/BFB0086682
  • [6] ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD
    APEL, T
    DOBROWOLSKI, M
    [J]. COMPUTING, 1992, 47 (3-4) : 277 - 293
  • [7] Apel T, 1998, MATH METHOD APPL SCI, V21, P519, DOI 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.3.CO
  • [8] 2-I
  • [9] APEL T, 2003, COMMUNICATION JUL
  • [10] APEL T, 1999, ADV NUMERICAL MATH