Statistical considerations for cross-sectional HIV incidence estimation based on recency test

被引:5
作者
Gao, Fei [1 ,2 ]
Bannick, Marlena [3 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1100 Fairview Ave N M2-C200, Seattle, WA 98109 USA
[2] Fred Hutchinson Canc Res Ctr, Publ Hlth Sci Div, Seattle, WA 98109 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
biomarker; HIV; incidence; prevalence; recency assay; UNITED-STATES; VIRAL LOAD; INFECTIONS; BED; COHORT; ASSAY;
D O I
10.1002/sim.9296
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Longitudinal cohorts to determine the incidence of HIV infection are logistically challenging, so researchers have sought alternative strategies. Recency test methods use biomarker profiles of HIV-infected subjects in a cross-sectional sample to infer whether they are "recently" infected and to estimate incidence in the population. Two main estimators have been used in practice: one that assumes a recency test is perfectly specific, and another that allows for false-recent results. To date, these commonly used estimators have not been rigorously studied with respect to their assumptions and statistical properties. In this article, we present a theoretical framework with which to understand these estimators and interrogate their assumptions, and perform a simulation study and data analysis to assess the performance of these estimators under realistic HIV epidemiological dynamics. We find that the snapshot estimator and the adjusted estimator perform well when their corresponding assumptions hold. When assumptions on constant incidence and recency test characteristics fail to hold, the adjusted estimator is more robust than the snapshot estimator. We conclude with recommendations for the use of these estimators in practice and a discussion of future methodological developments to improve HIV incidence estimation via recency test.
引用
收藏
页码:1446 / 1461
页数:16
相关论文
共 50 条
[11]   Estimating HIV hazard rates from cross-sectional HIV prevalence data [J].
Wong, Kam-Fai ;
Tsai, Wei-Yann ;
Kuhn, Louise .
STATISTICS IN MEDICINE, 2006, 25 (14) :2441-2449
[12]   Performance of a Limiting-Antigen Avidity Enzyme Immunoassay for Cross-Sectional Estimation of HIV Incidence in the United States [J].
Konikoff, Jacob ;
Brookmeyer, Ron ;
Longosz, Andrew F. ;
Cousins, Matthew M. ;
Celum, Connie ;
Buchbinder, Susan P. ;
Seage, George R., III ;
Kirk, Gregory D. ;
Moore, Richard D. ;
Mehta, Shruti H. ;
Margolick, Joseph B. ;
Brown, Joelle ;
Mayer, Kenneth H. ;
Koblin, Beryl A. ;
Justman, Jessica E. ;
Hodder, Sally L. ;
Quinn, Thomas C. ;
Eshleman, Susan H. ;
Laeyendecker, Oliver .
PLOS ONE, 2013, 8 (12)
[13]   Evaluation of multi-assay algorithms for cross-sectional HIV incidence estimation in settings with universal antiretroviral treatment [J].
Grant-McAuley, Wendy ;
Laeyendecker, Oliver ;
Monaco, Daniel ;
Chen, Athena ;
Hudelson, Sarah E. ;
Klock, Ethan ;
Brookmeyer, Ron ;
Morrison, Douglas ;
Piwowar-Manning, Estelle ;
Morrison, Charles S. ;
Hayes, Richard ;
Ayles, Helen ;
Bock, Peter ;
Kosloff, Barry ;
Shanaube, Kwame ;
Mandla, Nomtha ;
van Deventer, Anneen ;
Ruczinski, Ingo ;
Kammers, Kai ;
Larman, H. Benjamin ;
Eshleman, Susan H. .
BMC INFECTIOUS DISEASES, 2022, 22 (01)
[14]   Aging with HIV: a cross-sectional look at comorbidities [J].
Montes, M. C. ;
Rueda-Camino, J. A. ;
Rallon, N. ;
Nistal-Juncos, S. ;
Martin, R. Barba .
REVISTA CLINICA ESPANOLA, 2025, 225 (06)
[15]   Estimating HIV incidence among key affected populations in China from serial cross-sectional surveys in 2010-2014 [J].
Cui, Yan ;
Guo, Wei ;
Li, Dongmin ;
Wang, Liyan ;
Shi, Cynthia X. ;
Brookmeyer, Ron ;
Detels, Roger ;
Ge, Lin ;
Ding, Zhengwei ;
Wu, Zunyou .
JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2016, 19
[16]   Regression with interval-censored covariates: Application to cross-sectional incidence estimation [J].
Morrison, Doug ;
Laeyendecker, Oliver ;
Brookmeyer, Ron .
BIOMETRICS, 2022, 78 (03) :908-921
[17]   Incidence estimation using a single cross-sectional age-specific prevalence survey with differential mortality [J].
Turner, Elizabeth L. ;
Sweeting, Michael J. ;
Lindfield, Robert J. ;
DeAngelis, Daniela .
STATISTICS IN MEDICINE, 2014, 33 (03) :422-435
[18]   Prevalence of tuberculosis, HIV/AIDS, and hepatitis; in a prison of Balochistan: a cross-sectional survey [J].
Wali, Ahmad ;
Khan, Dawood ;
Safdar, Nauman ;
Shawani, Zeenat ;
Fatima, Razia ;
Yaqoob, Aashifa ;
Qadir, Aurangzeb ;
Ahmed, Sultan ;
Rashid, Hamayun ;
Ahmed, Bashir ;
Khan, Shereen .
BMC PUBLIC HEALTH, 2019, 19 (01)
[19]   Field Validation of Limiting-Antigen Avidity Enzyme Immunoassay to Estimate HIV-1 Incidence in Cross-Sectional Survey in Swaziland [J].
Duong, Yen T. ;
Dobbs, Trudy ;
Mavengere, Yvonne ;
Manjengwa, Julius ;
Rottinghaus, Erin ;
Saito, Suzue ;
Bock, Naomi ;
Philip, Neena ;
Justman, Jessica ;
Bicego, George ;
Nkengasong, John N. ;
Parekh, Bharat S. .
AIDS RESEARCH AND HUMAN RETROVIRUSES, 2019, 35 (10) :896-905
[20]   Cross-sectional human immunodeficiency virus incidence estimation accounting for heterogeneity across communities [J].
Xu, Yuejia ;
Laeyendecker, Oliver ;
Wang, Rui .
BIOMETRICS, 2019, 75 (03) :1017-1028