A remarkable representation of the Clifford group

被引:0
作者
Bengtsson, Ingemar [1 ]
机构
[1] Stockholm Univ, S-10691 Stockholm, Sweden
来源
ADVANCES IN QUANTUM THEORY | 2011年 / 1327卷
关键词
Heisenberg group; MUTUALLY UNBIASED BASES; EQUIANGULAR LINES;
D O I
10.1063/1.3567433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The finite Heisenberg group knows when the dimension of Hilbert space is a square number. Remarkably, it then admits a representation such that the entire Clifford-group the automorphism group of the Heisenberg group-is represented by monomial phase-permutation matrices. This has a beneficial influence on the amount of calculation that must be done to find Symmetric Informationally Complete POVMs. I make some comments on the equations obeyed by the absolute values of the components of the SIC vectors, and on the fact that the representation partly suggests a preferred tensor product structure.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 50 条
  • [41] Commutators of Multipliers on the Heisenberg Group
    刘和平
    Science China Mathematics, 1993, (11) : 1317 - 1328
  • [42] Uncertainty inequalities for the Heisenberg group
    Xiao, Jinsen
    He, Jianxun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (04): : 573 - 581
  • [43] Riesz Potential on the Heisenberg Group
    Jinsen Xiao
    Jianxun He
    Journal of Inequalities and Applications, 2011
  • [44] BISECTORS IN THE HEISENBERG GROUP I
    Gou, Gaoshun
    Jiang, Yueping
    Platis, Ioannis D.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (01) : 225 - 235
  • [45] Continued fractions on the Heisenberg group
    Lukyanenko, Anton
    Vandehey, Joseph
    ACTA ARITHMETICA, 2015, 167 (01) : 19 - 42
  • [46] Hausdorff Operators on the Heisenberg Group
    Jiu Hua GUO
    Li Jing SUN
    Fa You ZHAO
    Acta Mathematica Sinica,English Series, 2015, (11) : 1703 - 1714
  • [47] Hausdorff operators on the Heisenberg group
    Jiu Hua Guo
    Li Jing Sun
    Fa You Zhao
    Acta Mathematica Sinica, English Series, 2015, 31 : 1703 - 1714
  • [48] Invariant Translators of the Heisenberg Group
    Pipoli, Giuseppe
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (05) : 5219 - 5258
  • [49] BISECTORS IN THE HEISENBERG GROUP I
    Gou, Gaoshun
    Jiang, Yueping
    Platis, Ioannis d.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 60 (01) : 225 - 235
  • [50] Different Faces of the Shearlet Group
    Dahlke, Stephan
    De Mari, Filippo
    De Vito, Ernesto
    Haeuser, Soeren
    Steidl, Gabriele
    Teschke, Gerd
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) : 1693 - 1729