A remarkable representation of the Clifford group

被引:0
|
作者
Bengtsson, Ingemar [1 ]
机构
[1] Stockholm Univ, S-10691 Stockholm, Sweden
来源
ADVANCES IN QUANTUM THEORY | 2011年 / 1327卷
关键词
Heisenberg group; MUTUALLY UNBIASED BASES; EQUIANGULAR LINES;
D O I
10.1063/1.3567433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The finite Heisenberg group knows when the dimension of Hilbert space is a square number. Remarkably, it then admits a representation such that the entire Clifford-group the automorphism group of the Heisenberg group-is represented by monomial phase-permutation matrices. This has a beneficial influence on the amount of calculation that must be done to find Symmetric Informationally Complete POVMs. I make some comments on the equations obeyed by the absolute values of the components of the SIC vectors, and on the fact that the representation partly suggests a preferred tensor product structure.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 50 条
  • [21] Some remarks on products of sets in the Heisenberg group and in the affine group
    Shkredov, Ilya D.
    FORUM MATHEMATICUM, 2020, 32 (01) : 189 - 199
  • [22] Analytic Features of Reproducing Groups for the Metaplectic Representation
    Elena Cordero
    Filippo De Mari
    Krzysztof Nowak
    Anita Tabacco
    Journal of Fourier Analysis and Applications, 2006, 12 : 157 - 180
  • [23] On the structure of analytic vectors for the Schrödinger representation
    Rahul Garg
    Sundaram Thangavelu
    Monatshefte für Mathematik, 2012, 167 : 61 - 80
  • [24] THE (n+1)-LIPSCHITZ HOMOTOPY GROUP OF THE HEISENBERG GROUP Hn
    Hajlasz, Piotr
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 1305 - 1308
  • [25] Quasiconvexity in the Heisenberg group
    Herron, David A.
    Lukyanenko, Anton
    Tyson, Jeremy T.
    GEOMETRIAE DEDICATA, 2018, 192 (01) : 157 - 170
  • [26] Solvability on the Heisenberg group
    Karadzhov, GE
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (04) : 400 - 414
  • [27] Quasiconvexity in the Heisenberg group
    David A. Herron
    Anton Lukyanenko
    Jeremy T. Tyson
    Geometriae Dedicata, 2018, 192 : 157 - 170
  • [28] A Weierstrass Representation Formula for Minimal Surfaces in ℍ3 and ℍ2 × ℝ
    Francesco Mercuri
    Stefano Montaldo
    Paola Piu
    Acta Mathematica Sinica, 2006, 22 : 1603 - 1612
  • [29] Geodesics in the Heisenberg Group
    Hajlasz, Piotr
    Zimmerman, Scott
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 325 - 337
  • [30] GENERIC REPRESENTATION THEORY OF THE UNIPOTENT UPPER TRIANGULAR GROUPS
    Crumley, Michael
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3349 - 3382