Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory

被引:10
作者
Bergelson, V. [1 ]
Leibman, A. [1 ]
Lesigne, E. [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083, F-37200 Tours, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2007年 / 103卷 / 1期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s11854-008-0002-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce two notions of complexity of a system of polynomials p(1),..., p(r) is an element of Z [n] and apply them to characterize the limits of the expressions of the form mu(A(0) boolean AND T-p1 ((n)) A(1) boolean AND...boolean AND T-pr ((n)) A(r) )where T is a skew-product transformation of a torus T-d and A(i) subset of T-d are measurable sets. The dynamical results obtained allow us to construct subsets of integers with specific combinatorial properties related to the polynomial Szemeredi theorem.
引用
收藏
页码:47 / 92
页数:46
相关论文
共 14 条
[1]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[2]  
BERGELSON V, 1996, ERGODIC THEORY ZD AC, P273
[3]   Polynomial averages converge to the product of integrals [J].
Frantzikinakis, N ;
Kra, B .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) :267-276
[4]  
FRANTZIKINAKIS N, IN PRESS T AM MATH S
[5]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256
[6]  
FURSTENBERG H, 1990, LEGACY J VONNEUMAN, P43
[7]  
Furstenberg H, 1981, Recurrence in ergodic theory and combinatorial number theory
[8]   Convergence of polynomial ergodic averages [J].
Host, B ;
Kra, B .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 149 (1) :1-19
[9]   Nonconventional ergodic averages and nilmanifolds [J].
Host, B ;
Kra, B .
ANNALS OF MATHEMATICS, 2005, 161 (01) :397-488
[10]   Convergence of multiple ergodic averages along polynomials of several variables [J].
Leibman, A .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 146 (1) :303-315