Model fusion for prediction of apple firmness using hyperspectral scattering image

被引:59
作者
Wang, Shuang [1 ]
Huang, Min [1 ]
Zhu, Qibing [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral scattering image; Wavelength selection; Partial least squares; Uninformative variable elimination; Supervised affinity propagations; Model fusion; FRUIT FIRMNESS; SPECTROSCOPY;
D O I
10.1016/j.compag.2011.10.008
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Hyperspectral scattering image is an advanced technology widely used in non-destructive measurement of fruit quality. To develop a better prediction model for apple firmness, the present study investigates a model fusion method coupled with wavelength selection algorithms. The current paper first discusses two wavelength selection algorithms, namely, uninformative variable elimination (UVE) and supervised affinity propagation (SAP). The selected effective wavelengths are then set as input to the partial least square (PLS) model. Six hundred "Golden Delicious" apples were analyzed. The first 450 apples were used as sample for the calibration model, whereas the remaining 150 were used for the prediction model. Compared with full wavelengths, the number of effective wavelengths based on the UVE and SAP algorithms decreased to 34% and 35%, but the correlation coefficient of prediction (Rp) increased from 0.791 to 0.805 and 0.814, whereas the root mean-square error of prediction (RMSEP) decreased from 6.00 to 5.73 and 5.71 N, respectively. A fusion model was then developed using UVE-PLS and SAP-PLS models coupled with backpropagation neural network. A better prediction accuracy was achieved from the fusion model (Rp = 0.828 and RMSEP = 5.53 N). The model fusion provides an effective modeling method for apple firmness prediction using hyperspectral scattering image technique. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Early detection of apple bruises on different background colors using hyperspectral imaging
    ElMasry, Gamal
    Wang, Ning
    Vigneault, Clement
    Qiao, Jun
    ElSayed, Adel
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2008, 41 (02) : 337 - 345
  • [22] Using GA-DOSC Method to Eliminate Interference of Peel with Prediction of Apple Firmness Based on Near Infrared Diffuse Reflection Spectra
    Shi Bo-lin
    Qing Zhao-shen
    Ji Bao-ping
    Tu Zhen-hua
    Zhu Da-zhou
    Yin Jing-yuan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29 (03) : 665 - 670
  • [23] Prediction of tomato firmness using spatially-resolved spectroscopy
    Huang, Yuping
    Lu, Renfu
    Xu, Yifei
    Chen, Kunjie
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2018, 140 : 18 - 26
  • [24] Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data
    Fan, Shuxiang
    Zhang, Baohua
    Li, Jiangbo
    Liu, Chen
    Huang, Wenqian
    Tian, Xi
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2016, 121 : 51 - 61
  • [25] Simulated JWST Data Sets for Multispectral and Hyperspectral Image Fusion
    Guilloteau, Claire
    Oberlin, Thomas
    Berne, Olivier
    Habart, Emilie
    Dobigeon, Nicolas
    ASTRONOMICAL JOURNAL, 2020, 160 (01)
  • [26] Determination of soluble solids content and firmness in plum using hyperspectral imaging and chemometric algorithms
    Meng, Qinglong
    Shang, Jing
    Huang, Renshuai
    Zhang, Yan
    JOURNAL OF FOOD PROCESS ENGINEERING, 2021, 44 (01)
  • [27] Prediction of mechanical properties of blueberry using hyperspectral interactance imaging
    Hu, Meng-Han
    Dong, Qing-Li
    Liu, Bao-Lin
    Opara, Umezuruike Linus
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2016, 115 : 122 - 131
  • [28] Improving of prediction model for apple sugar content using independent component analysis
    Zou Xiaobo
    Zhao Jiewen
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2006, 34 (09) : 1291 - 1294
  • [29] A short note on deep contextual spatial and spectral information fusion for hyperspectral image processing: Case of pork belly properties prediction
    Mishra, Puneet
    Albano-Gaglio, Michela
    Font-i-Furnols, Maria
    JOURNAL OF CHEMOMETRICS, 2024, 38 (08)
  • [30] Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple
    M. C. A. M. Bink
    J. Jansen
    M. Madduri
    R. E. Voorrips
    C.-E. Durel
    A. B. Kouassi
    F. Laurens
    F. Mathis
    C. Gessler
    D. Gobbin
    F. Rezzonico
    A. Patocchi
    M. Kellerhals
    A. Boudichevskaia
    F. Dunemann
    A. Peil
    A. Nowicka
    B. Lata
    M. Stankiewicz-Kosyl
    K. Jeziorek
    E. Pitera
    A. Soska
    K. Tomala
    K. M. Evans
    F. Fernández-Fernández
    W. Guerra
    M. Korbin
    S. Keller
    M. Lewandowski
    W. Plocharski
    K. Rutkowski
    E. Zurawicz
    F. Costa
    S. Sansavini
    S. Tartarini
    M. Komjanc
    D. Mott
    A. Antofie
    M. Lateur
    A. Rondia
    L. Gianfranceschi
    W. E. van de Weg
    Theoretical and Applied Genetics, 2014, 127 : 1073 - 1090