An Age and Spatially Structured Population Model for Proteus Mirabilis Swarm-Colony Development

被引:6
作者
Laurencot, Ph. [2 ,3 ]
Walker, Ch. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
[2] CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Univ Toulouse, F-31062 Toulouse 9, France
关键词
population models; age structure; degenerate diffusion;
D O I
10.1051/mmnp:2008041
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this paper we investigate a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. The system is shown to admit global weak solutions.
引用
收藏
页码:49 / 77
页数:29
相关论文
共 19 条
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[4]   Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source [J].
Andreu, F ;
Mazón, JM ;
Simondon, F ;
Toledo, J .
MATHEMATISCHE ANNALEN, 1999, 314 (04) :703-728
[5]   A structured-population model of Proteus mirabilis swarm-colony development [J].
Ayati, BP .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 52 (01) :93-114
[6]   Modeling the role of the cell cycle in regulating Proteus mirabilis swarm-colony development [J].
Ayati, Bruce P. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (08) :913-918
[7]  
CZIROK A, 2001, PHYS REV E, V36
[8]   Kinetic model of Proteus mirabilis swarm colony development [J].
Esipov, SE ;
Shapiro, JA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (03) :249-268
[9]  
Frénod E, 2006, DIFFER INTEGRAL EQU, V19, P697
[10]  
LAURENCOT P, PROTEUS MIRABI UNPUB