Spiral spectrum of multi-modified Bessel-Gaussian Schell beams in non-Kolmogorov turbulence

被引:5
作者
Zhu, Yun [1 ,2 ]
Zhang, Yixin [1 ]
Li, Ye [1 ]
Hu, Zhengda [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sch Internet Things, Wuxi 214122, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2016年 / 30卷 / 26期
关键词
Multi-modified Bessel-Gaussian Schell beam; OAM; non-Kolmogorov; atmospheric turbulence; ORBITAL ANGULAR-MOMENTUM; ATMOSPHERIC-TURBULENCE; LASER-BEAMS; MODEL BEAMS; SCINTILLATION; STATES;
D O I
10.1142/S0217979216501939
中图分类号
O59 [应用物理学];
学科分类号
摘要
On the basis of the Rytov approximation, we investigate the effects of non-Kolmogorov turbulence on the spread of the spiral spectrum and the received power of multi-modified Bessel-Gaussian Schell (MMBGS) beams carrying orbital angular momentum. Numerical results show that the spread of the spiral spectrum increases as the azimuthal index of the source increases and that an optimal value of the beam waist is obtained. We find that the spread of partially coherent MMBGS beams with short wavelength is more robust than that of beams with long wavelength. The complete reverse is true for fully coherent MMBGS beams.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence [J].
Wu, Guohua ;
Guo, Hong ;
Yu, Song ;
Luo, Bin .
OPTICS LETTERS, 2010, 35 (05) :715-717
[22]   Change in the state of polarization of Gaussian Schell-model beam propagating through non-Kolmogorov turbulence [J].
Zhang, Li ;
Xu, Zhiyong ;
Pu, Tao ;
Zhang, Han ;
Wang, Jingyuan ;
Shen, Yuehong .
RESULTS IN PHYSICS, 2017, 7 :4332-4336
[23]   Propagation of a twist Gaussian-Schell model beam in non-Kolmogorov turbulence [J].
Cui, Yan ;
Wang, Fei ;
Cai, Yangjian .
OPTICS COMMUNICATIONS, 2014, 324 :108-113
[24]   Experimental study of electromagnetic Bessel-Gaussian Schell Model beams propagating in a turbulent channel [J].
Avramov-Zamurovic, S. ;
Nelson, C. ;
Guth, S. ;
Korotkova, O. ;
Malek-Madani, R. .
OPTICS COMMUNICATIONS, 2016, 359 :207-215
[25]   Average spreading of a linear Gaussian-Schell model beam array in non-Kolmogorov turbulence [J].
Tang, H. ;
Ou, B. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (04) :1007-1012
[26]   Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence [J].
宋真真 ;
刘正君 ;
周可雅 ;
孙琼阁 ;
刘树田 .
Chinese Physics B, 2017, 26 (02) :210-216
[27]   Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence [J].
Song, Zhen-Zhen ;
Liu, Zheng-Jun ;
Zhou, Ke-Ya ;
Sun, Qiong-Ge ;
Liu, Shu-Tian .
CHINESE PHYSICS B, 2017, 26 (02)
[28]   Propagation factors of standard and elegant Laguerre Gaussian beams in non-Kolmogorov turbulence [J].
Xu, Yonggen ;
Tian, Huanhuan ;
Feng, Hao ;
Du, Quan ;
Dan, Youquan .
OPTIK, 2016, 127 (22) :10999-11008
[29]   Polarization properties of Square Multi-Gaussian Schell-Model beam propagating through non-Kolmogorov turbulence [J].
Zhang, Hanmou ;
Fu, Wenyu .
OPTIK, 2017, 134 :161-169
[30]   Bessel-Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence [J].
Gao, Jie ;
Zhu, Yu ;
Wang, Donglin ;
Zhang, Yixin ;
Hu, Zhengda ;
Cheng, Mingjian .
PHOTONICS RESEARCH, 2016, 4 (02) :30-34