Evolutionary Computation Paradigm to Determine Deep Neural Networks Architectures

被引:3
作者
Ivanescu, R. C. [1 ]
Belciug, S. [2 ]
Nascu, A. [2 ]
Serbanescu, M. S. [2 ]
Iliescu, D. G. [2 ,3 ]
机构
[1] Univ Craiova, Dept Comp & Informat Technol, AI Cuza 13, Craiova 200585, Romania
[2] Univ Craiova, Dept Comp Sci, AI Cuza 13, Craiova 200585, Romania
[3] Univ Med & Pharm, Dept 2, Craiova Petru Rares 2, Craiova 200349, Romania
关键词
deep learning; evolutionary computation; statistical analysis; image classification; fetal morphology;
D O I
10.15837/ijccc.2022.5.4886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image classification is usually done using deep learning algorithms. Deep learning architectures are set deterministically. The aim of this paper is to propose an evolutionary computation paradigm that optimises a deep learning neural network's architecture. A set of chromosomes are randomly generated, after which selection, recombination, and mutation are applied. At each generation the fittest chromosomes are kept. The best chromosome from the last generation determines the deep learning architecture. We have tested our method on a second trimester fetal morphology database. The proposed model is statistically compared with DenseNet201 and ResNet50, proving its competitiveness.
引用
收藏
页数:11
相关论文
共 31 条
  • [11] Hajewski J, 2020, Arxiv, DOI [arXiv:2004.07607, 10.48550/arXiv.2004.07607, DOI 10.48550/ARXIV.2004.07607]
  • [12] Haupt R.L., 2004, PRACTICAL GENETIC AL, DOI DOI 10.1002/0471671746
  • [13] Khadka S., 2019, ECLR 2020
  • [14] Kinsner-Ovaskainen A, 2020, 30158 EUR EN, DOI [10.2760/65886, DOI 10.2760/65886]
  • [15] Komatsu R., 2019, ULTRASOUND OBST GYN, V54, P134, DOI [10.1002/uog.20796, DOI 10.1002/UOG.20796]
  • [16] Lindauer M., 2019, ARXIVORGABS19090245
  • [17] A Method Based on Multiple Population Genetic Algorithm to Select Hyper-Parameters of Industrial Intrusion Detection Classifier
    Liu, Xuejun
    Wang, Hao
    Zhang, Xiaoni
    Luan, Haiying
    Sha, Yun
    Yan, Yong
    [J]. STUDIES IN INFORMATICS AND CONTROL, 2021, 30 (03): : 39 - 49
  • [18] Lobo I., 2008, Nature Education, V1, P18
  • [19] Matsuoka R., 2019, ULTRASOUND OBST GYN, DOI [10.1002/uog.20945,2019, DOI 10.1002/UOG.20945,2019]
  • [20] Miikkulainen R, 2019, ARTIFICIAL INTELLIGENCE IN THE AGE OF NEURAL NETWORKS AND BRAIN COMPUTING, P293, DOI 10.1016/B978-0-12-815480-9.00015-3