Evolutionary Computation Paradigm to Determine Deep Neural Networks Architectures

被引:3
作者
Ivanescu, R. C. [1 ]
Belciug, S. [2 ]
Nascu, A. [2 ]
Serbanescu, M. S. [2 ]
Iliescu, D. G. [2 ,3 ]
机构
[1] Univ Craiova, Dept Comp & Informat Technol, AI Cuza 13, Craiova 200585, Romania
[2] Univ Craiova, Dept Comp Sci, AI Cuza 13, Craiova 200585, Romania
[3] Univ Med & Pharm, Dept 2, Craiova Petru Rares 2, Craiova 200349, Romania
关键词
deep learning; evolutionary computation; statistical analysis; image classification; fetal morphology;
D O I
10.15837/ijccc.2022.5.4886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image classification is usually done using deep learning algorithms. Deep learning architectures are set deterministically. The aim of this paper is to propose an evolutionary computation paradigm that optimises a deep learning neural network's architecture. A set of chromosomes are randomly generated, after which selection, recombination, and mutation are applied. At each generation the fittest chromosomes are kept. The best chromosome from the last generation determines the deep learning architecture. We have tested our method on a second trimester fetal morphology database. The proposed model is statistically compared with DenseNet201 and ResNet50, proving its competitiveness.
引用
收藏
页数:11
相关论文
共 31 条
  • [1] Al-Bander B, 2020, ANN C MEDICALIMAGE U, P142
  • [2] An Interactive Automation for Human Biliary Tree Diagnosis Using Computer Vision
    AL-Oudat, Mohammad
    Alomari, Saleh
    Qattous, Hazem
    Azzeh, Mohammad
    AL-Munaize, Tariq
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2021, 16 (05) : 1 - 16
  • [3] Toward an Autonomous Incubation System for Monitoring Premature Infants
    Alqaheri, Hameed
    Sujatha, R.
    Chatterjee, Jyotir Moy
    Shooriya, Sridharan
    Kumar, Sai Aswin J.
    Satish, Neha
    [J]. STUDIES IN INFORMATICS AND CONTROL, 2021, 30 (04): : 121 - 131
  • [4] Learning deep neural networks? architectures using differential evolution. Case study: Medical imaging processing
    Belciug, Smaranda
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [5] Estimating Global Burden of Disease due to congenital anomaly: an analysis of European data
    Boyle, Breidge
    Addor, Marie-Claude
    Arriola, Larraitz
    Barisic, Ingeborg
    Bianchi, Fabrizio
    Csaky-Szunyogh, Melinda
    de Walle, Hermien E. K.
    Dias, Carlos Matias
    Draper, Elizabeth
    Gatt, Miriam
    Garne, Ester
    Haeusler, Martin
    Kallen, Karin
    Latos-Bielenska, Anna
    McDonnell, Bob
    Mullaney, Carmel
    Nelen, Vera
    Neville, Amanda J.
    O'Mahony, Mary
    Queisser-Wahrendorf, Annette
    Randrianaivo, Hanitra
    Rankin, Judith
    Rissmann, Anke
    Ritvanen, Annukka
    Rounding, Catherine
    Tucker, David
    Verellen-Dumoulin, Christine
    Wellesley, Diana
    Wreyford, Ben
    Zymak-Zakutnia, Natalia
    Dolk, Helen
    [J]. ARCHIVES OF DISEASE IN CHILDHOOD-FETAL AND NEONATAL EDITION, 2018, 103 (01): : F22 - F28
  • [6] Demsar J, 2006, J MACH LEARN RES, V7, P1
  • [7] Neuro-inspired Framework for Cognitive Manufacturing Control
    Dumitrache, I
    Caramihai, S., I
    Popescu, D. C.
    Moisescu, M. A.
    Sacala, I. S.
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2021, 16 (06)
  • [8] Eiben A. E., 2003, NAT COMP SER, V53, P18, DOI 10.1007/978-3-662-44874-8
  • [9] An evolutionary computational approach to probabilistic neural network with application to hepatic cancer diagnosis
    Gorunescu, F
    Gorunescu, M
    El-Darzi, E
    Gorunescu, S
    [J]. 18TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2005, : 461 - 466
  • [10] A statistical framework for evaluating neural networks to predict recurrent events in breast cancer
    Gorunescu, Florin
    Gorunescu, Marina
    El-Darzi, Elia
    Gorunescu, Smaranda
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2010, 39 (05) : 471 - 488