Global existence and asymptotic behavior of the Cauchy problem for fourth-order Schrodinger equations with combined power-type nonlinearities

被引:5
作者
Guo, Cuihua [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Fourth-order Schrodinger equation; Combined power-type nonlinearities; Cauchy problem; Global existence; Asymptotic behavior; WELL-POSEDNESS; DISPERSION; SCATTERING; SPACES;
D O I
10.1016/j.jmaa.2012.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global existence of solutions in Sobolev spaces and the asymptotic behavior for the Cauchy problem of the following fourth-order Schrodinger equation with combined power-type nonlinearities iu(t) + Delta(2)u + lambda(1)vertical bar u vertical bar(p)u + lambda(2)vertical bar u vertical bar(8/n-4) u = 0, where t epsilon R, x epsilon R-n, 8/n <= p < 8/n-4, lambda(1), lambda(2) are nonzero real numbers. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 122
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[3]  
Cazenave Th., 2003, COURANT LECT NOTES M
[4]   Well-posedness of higher-order nonlinear Schrodinger equations in Sobolev spaces Hs (Rn) and applications [J].
Cui, Shangbin ;
Guo, Cuihua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) :687-707
[5]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[6]   Global existence of solutions for a fourth-order nonlinear Schrodinger equation [J].
Guo, Cuihua ;
Cui, Shangbin .
APPLIED MATHEMATICS LETTERS, 2006, 19 (08) :706-711
[7]   Global existence of solutions for a fourth-order nonlinear Schrodinger equation in n+1 dimensions [J].
Guo, Cuihua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :555-563
[8]   Well-posedness of Cauchy problem for the fourth order nonlinear Schrodinger equations in multi-dimensional spaces [J].
Hao, Chengchun ;
Hsiao, Ling ;
Wang, Baoxiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :58-83
[9]   Wellposedness for the fourth order nonlinear Schrodinger equations [J].
Hao, Chengchun ;
Hsiao, Ling ;
Wang, Baoxiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) :246-265
[10]   Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion [J].
Karpman, VI ;
Shagalov, AG .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 144 (1-2) :194-210