On vector variational inequalities in reflexive Banach spaces

被引:71
作者
Huang, NJ [1 ]
Fang, YP [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Brouwer fixed point theorem; complete continuity; KKM-Fan lemma; KKM mapping; vector variational inequality;
D O I
10.1007/s10898-003-2686-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the solvability for a class of vector variational inequalities in reflexive Banach spaces. By using Brouwer fixed point theorem, we prove the solvability for this class of vector variational inequalities without monotonicity assumption. The solvability results for this class of vector variational inequalities with monotone mappings are also presented by using the KKM-Fan lemma.
引用
收藏
页码:495 / 505
页数:11
相关论文
共 20 条
[1]  
Brouwer L., 1912, MATH ANN, V71, P305, DOI 10.1007/BF01456846
[2]  
CHEN GY, 1989, CHINESE SCI BULL, V34, P969
[3]   EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM [J].
CHEN, GY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :445-456
[4]  
CHEN GY, 1990, J MATH ANAL APPL, V153, P136
[5]  
CHEN GY, 1990, Z OPERATIONS RES, V3, P1
[6]   SOME PROPERTIES OF CONVEX-SETS RELATED TO FIXED-POINT THEOREMS [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1984, 266 (04) :519-537
[7]  
Giannessi F., 1980, VARIATIONAL INEQUALI
[8]  
Giannessi F., 1995, Variational Inequalities and Network Equilibrium Problems
[9]  
Giannessi F., 2000, VECTOR VARIATIONAL I
[10]  
HU JY, 1997, J OPTIM THEORY APPL, V93, P141