Interface dynamics of the porous medium equation with a bistable reaction term

被引:0
作者
Alfaro, Matthieu [1 ]
Hilhorst, Danielle [2 ,3 ]
机构
[1] Univ Montpellier 2, I3M, F-34095 Montpellier 5, France
[2] Univ Paris 11, CNRS, F-91405 Orsay, France
[3] Univ Paris 11, Math Lab, F-91405 Orsay, France
关键词
degenerate diffusion; singular perturbation; sharp interface limit; population dynamics; ALLEN-CAHN EQUATION;
D O I
10.3233/ASY-2011-1067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a degenerate partial differential equation arising in population dynamics, namely the porous medium equation with a bistable reaction term. We study its asymptotic behavior as a small parameter, related to the thickness of a diffuse interface, tends to zero. We prove the rapid formation of transition layers which then propagate. We prove the convergence to a sharp interface limit whose normal velocity, at each point, is that of the underlying degenerate travelling wave.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 14 条
[1]   Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion [J].
Alfaro, M. ;
Hilhorst, D. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (05) :1-12
[2]   The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system [J].
Alfaro, Matthieu ;
Hilhorst, Danielle ;
Matano, Hiroshi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (02) :505-565
[3]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[4]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[5]   POSITIVITY VERSUS LOCALIZATION IN DEGENERATE DIFFUSION-EQUATIONS [J].
BERTSCH, M ;
KERSNER, R ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (09) :987-1008
[6]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[7]   Front propagation for degenerate parabolic equations [J].
Feireisl, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (06) :735-746
[8]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432
[9]   REGULATION OF INHOMOGENEOUS POPULATIONS [J].
GURNEY, WSC ;
NISBET, RM .
JOURNAL OF THEORETICAL BIOLOGY, 1975, 52 (02) :441-457
[10]   DIFFUSION OF BIOLOGICAL POPULATIONS [J].
GURTIN, ME ;
MACCAMY, RC .
MATHEMATICAL BIOSCIENCES, 1977, 33 (1-2) :35-49