Cinchonine inhibits osteoclast differentiation by regulating TAK1 and AKT, and promotes osteogenesis

被引:18
作者
Jo, You-Jin [1 ]
Lee, Hye In [1 ]
Kim, Narae [1 ]
Hwang, Donghyun [2 ]
Lee, Jiae [1 ]
Lee, Gong-Rak [1 ]
Hong, Seong-Eun [1 ]
Lee, Hana [2 ]
Kwon, Minjeong [1 ]
Kim, Nam Young [1 ]
Kim, Hyun Jin [1 ]
Park, Jin Ha [1 ]
Kang, Ye Hee [1 ]
Kim, Han Sung [2 ]
Lee, Soo Young [1 ]
Jeong, Woojin [1 ]
机构
[1] Ewha Womans Univ, Res Ctr Cellular Homeostasis, Dept Life Sci, Seoul, South Korea
[2] Yonsei Univ, Dept Biomed Engn, Wonju, South Korea
基金
新加坡国家研究基金会;
关键词
AKT; bone; cinchonine; osteoblast; osteoclast; TAK1; BONE LOSS; ACTIVATION; PATHWAY; NFATC1; LIGAND; PGC-1-BETA; CELLS; THERMOGENESIS; TRANSCRIPTION; MECHANISMS;
D O I
10.1002/jcp.29968
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cinchonine (CN) has been known to exert antimalarial, antiplatelet, and antiobesity effects. It was also recently reported to inhibit transforming growth factor beta-activated kinase 1 (TAK1) and protein kinase B (AKT) through binding to tumor necrosis factor receptor-associated factor 6 (TRAF6). However, its role in bone metabolism remains largely unknown. Here, we showed that CN inhibits osteoclast differentiation with decreased expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key determinant of osteoclastogenesis. Immunoblot and quantitative real-time polymerase chain reaction analysis as well as the reporter assay revealed that CN inhibits nuclear factor-kappa B and activator protein-1 by regulating TAK1. CN also attenuated the activation of AKT, cyclic AMP response element-binding protein, and peroxisome proliferator-activated receptor-gamma coactivator 1 beta (PGC1 beta), an essential regulator of mitochondrial biogenesis. Collectively, these results suggested that CN may inhibit TRAF6-mediated TAK1 and AKT activation, which leads to downregulation of NFATc1 and PGC1 beta resulting in the suppression of osteoclast differentiation. Interestingly, CN not only inhibited the maturation and resorption function of differentiated osteoclasts but also promoted osteoblast differentiation. Furthermore, CN protected lipopolysaccharide- and ovariectomy-induced bone destruction in mouse models, suggesting its therapeutic potential for treating inflammation-induced bone diseases and postmenopausal osteoporosis.
引用
收藏
页码:1854 / 1865
页数:12
相关论文
共 48 条
[21]   Dehydrocostus lactone suppresses osteoclast differentiation by regulating NFATc1 and inhibits osteoclast activation through modulating migration and lysosome function [J].
Lee, Hye In ;
Lee, Jiae ;
Hwang, Donghyun ;
Lee, Gong-Rak ;
Kim, Narae ;
Kwon, Minjeong ;
Lee, Hana ;
Piao, Donglan ;
Kim, Hyun Jin ;
Kim, Nam Young ;
Kim, Han Sung ;
Seo, Eun Kyoung ;
Kang, Dongmin ;
Jeong, Woojin .
FASEB JOURNAL, 2019, 33 (08) :9685-9694
[22]   Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling [J].
Lee, Jiae ;
Son, Han Saem ;
Lee, Hye In ;
Lee, Gong-Rak ;
Jo, You-Jin ;
Hong, Seong-Eun ;
Kim, Narae ;
Kwon, Minjeong ;
Kim, Nam Young ;
Kim, Hyun Jin ;
Lee, Yoo Jin ;
Seo, Eun Kyoung ;
Jeong, Woojin .
FASEB JOURNAL, 2019, 33 (02) :2026-2036
[23]   Orai1 mediates osteogenic differentiation via BMP signaling pathway in bone marrow mesenchymal stem cells [J].
Lee, Sung Hee ;
Park, Yongtae ;
Song, Minju ;
Srikanth, Sonal ;
Kim, Sol ;
Kang, Mo K. ;
Gwack, Yousang ;
Park, No-Hee ;
Kim, Reuben H. ;
Shin, Ki-Hyuk .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 473 (04) :1309-1314
[24]   Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance [J].
Lelliott, Christopher J. ;
Medina-Gomez, Gema ;
Petrovic, Natasa ;
Kis, Adrienn ;
Feldmann, Helena M. ;
Bjursell, Mikael ;
Parker, Nadeene ;
Curtis, Keira ;
Campbell, Mark ;
Hu, Ping ;
Zhang, Dongfang ;
Litwin, Sheldon E. ;
Zaha, Vlad G. ;
Fountain, Kimberly T. ;
Boudina, Sihem ;
Jimenez-Linan, Mercedes ;
Blount, Margaret ;
Lopez, Miguel ;
Meirhaeghe, Aline ;
Bohlooly-Y, Mohammad ;
Storlien, Leonard ;
Stromstedt, Maria ;
Snaith, Michael ;
Oresic, Matej ;
Abel, E. Dale ;
Cannon, Barbara ;
Vidal-Puig, Antonio .
PLOS BIOLOGY, 2006, 4 (11) :2042-2056
[25]   Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis [J].
Manolagas, SC .
ENDOCRINE REVIEWS, 2000, 21 (02) :115-137
[26]   Evidence for osteocyte regulation of bone homeostasis through RANKL expression [J].
Nakashima, Tomoki ;
Hayashi, Mikihito ;
Fukunaga, Takanobu ;
Kurata, Kosaku ;
Oh-hora, Masatsugu ;
Feng, Jian Q. ;
Bonewald, Lynda F. ;
Kodama, Tatsuhiko ;
Wutz, Anton ;
Wagner, Erwin F. ;
Penninger, Josef M. ;
Takayanagi, Hiroshi .
NATURE MEDICINE, 2011, 17 (10) :1231-1234
[27]   Cinchonine induces apoptosis of HeLa and A549 cells through targeting TRAF6 [J].
Qi, Yonghao ;
Pradipta, Ambara R. ;
Li, Miao ;
Zhao, Xuan ;
Lu, Lulu ;
Fu, Xuegang ;
Wei, Jing ;
Hsung, Richard P. ;
Tanaka, Katsunori ;
Zhou, Lijun .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2017, 36
[28]   Therapeutic approaches to bone diseases [J].
Rodan, GA ;
Martin, TJ .
SCIENCE, 2000, 289 (5484) :1508-1514
[29]   αvβ3 and macrophage colony-stimulating factor:: partners in osteoclast biology [J].
Ross, FP ;
Teitelbaum, SL .
IMMUNOLOGICAL REVIEWS, 2005, 208 :88-105
[30]   Regulation of osteoclast differentiation and function by the CaMK-CREB pathway [J].
Sato, Kojiro ;
Suematsu, Ayako ;
Nakashima, Tomoki ;
Takemoto-Kimura, Sayaka ;
Aoki, Kazuhiro ;
Morishita, Yasuyuki ;
Asahara, Hiroshi ;
Ohya, Keiichi ;
Yamaguchi, Akira ;
Takai, Toshiyuki ;
Kodama, Tatsuhiko ;
Chatila, Talal A. ;
Bito, Haruhiko ;
Takayanagi, Hiroshi .
NATURE MEDICINE, 2006, 12 (12) :1410-1416