Graphene Oxide and Derivatives: The Place in Graphene Family

被引:283
作者
Dideikin, Artur T. [1 ]
Vul, Alexander Y. [1 ]
机构
[1] Ioffe Inst, Div Solid State Elect, St Petersburg, Russia
来源
FRONTIERS IN PHYSICS | 2019年 / 6卷 / JAN期
基金
俄罗斯基础研究基金会;
关键词
graphene oxide; reduced graphene oxide; synthesis graphene; surface modification; applications; LIGHT-EMITTING-DIODES; X-RAY-ABSORPTION; SOLID-STATE NMR; PHOTOCATALYTIC ACTIVITY; GRAPHITE OXIDE; ASSISTED SYNTHESIS; THERMAL REDUCTION; HIGHLY EFFICIENT; RECENT PROGRESS; NANOPARTICLES;
D O I
10.3389/fphy.2018.00149
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graphene oxide (GO) is useful and promising material for graphene based applications in electronic, optics, chemistry, energy storage, and biology. At the beginning of graphene history GO was only a simple and cheap step for preparation of single and multilayer graphene films and bulk structures by reduction. The further studies revealed the substantial structure imperfection of graphene oxide derived materials due to the defects in initial graphite and incompletion of reducing process. However, the results of recent research demonstrated a great amount of unique chemical, optical and electronic properties of graphene oxide that allow regarding it as independent nanomaterial possessing a large area of applications. In general, it represents the ultra-large organic molecule containing 2D carbon mesh. Unlike conventional graphene it provides wide range of chemical methods for attachment of various functional groups to its surface for control optical transparency, electrical and thermal conductance. Recently developed methods for preparation of graphene oxide derivatives saturated by carboxyl groups open the new attractive application areas in green technologies including energy storage and utilizing nuclear wastes. The goal of the review is to summarize the results of recent studies of graphene oxide, derivatives and reveal the most promising directions to focus the efforts of researchers.
引用
收藏
页数:13
相关论文
共 133 条
  • [1] The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy
    Acik, Muge
    Lee, Geunsik
    Mattevi, Cecilia
    Pirkle, Adam
    Wallace, Robert M.
    Chhowalla, Manish
    Cho, Kyeongjae
    Chabal, Yves
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40) : 19761 - 19781
  • [2] Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
    Arora, Neha
    Dar, M. Ibrahim
    Hinderhofer, Alexander
    Pellet, Norman
    Schreiber, Frank
    Zakeeruddin, Shaik Mohammed
    Graetzel, Michael
    [J]. SCIENCE, 2017, 358 (6364) : 768 - 771
  • [3] Recent progress in perovskite solar cells
    Assadi, M. Khalaji
    Bakhoda, S.
    Saidur, R.
    Hanaei, H.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 : 2812 - 2822
  • [4] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
  • [5] Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/NCHEM.686, 10.1038/nchem.686]
  • [6] All in the graphene family - A recommended nomenclature for two-dimensional carbon materials
    Bianco, Alberto
    Cheng, Hui-Ming
    Enoki, Toshiaki
    Gogotsi, Yury
    Hurt, Robert H.
    Koratkar, Nikhil
    Kyotani, Takashi
    Monthioux, Marc
    Park, Chong Rae
    Tascon, Juan M. D.
    Zhang, Jin
    [J]. CARBON, 2013, 65 : 1 - 6
  • [7] A review on photocatalysis for air treatment: From catalyst development to reactor design
    Boyjoo, Yash
    Sun, Hongqi
    Liu, Jian
    Pareek, Vishnu K.
    Wang, Shaobin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2017, 310 : 537 - 559
  • [8] Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide
    Cai, Weiwei
    Piner, Richard D.
    Stadermann, Frank J.
    Park, Sungjin
    Shaibat, Medhat A.
    Ishii, Yoshitaka
    Yang, Dongxing
    Velamakanni, Aruna
    An, Sung Jin
    Stoller, Meryl
    An, Jinho
    Chen, Dongmin
    Ruoff, Rodney S.
    [J]. SCIENCE, 2008, 321 (5897) : 1815 - 1817
  • [9] NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations
    Casabianca, Leah B.
    Shaibat, Medhat A.
    Cai, Weiwei W.
    Park, Sungjin
    Piner, Richard
    Ruoff, Rodney S.
    Ishii, Yoshitaka
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (16) : 5672 - 5676
  • [10] A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment
    Chabot, Victor
    Higgins, Drew
    Yu, Aiping
    Xiao, Xingcheng
    Chen, Zhongwei
    Zhang, Jiujun
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1564 - 1596