Tolokonnikov's Lemma for Real H∞ and the Real Disc Algebra

被引:3
作者
Mikkola, Kalle [1 ]
Sasane, Amol [2 ]
机构
[1] Helsinki Univ Technol, Inst Math, Helsinki 02015, Finland
[2] London Sch Econ, Dept Math, London WC2A 2AE, England
关键词
Real function algebras; Tolokonnikov's Lemma; operator-valued functions; coprime factorization;
D O I
10.1007/s11785-007-0016-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Tolokonnikov's Lemma and the inner-outer factorization for the real Hardy space H-R(infinity), the space of bounded holomorphic (possibly operator-valued) functions on the unit disc all of whose matrix-entries (with respect to fixed orthonormal bases) are functions having real Fourier coefficients, or equivalently, each matrix entry f satisfies <(f(<(z)over bar>))over bar> = f(z) for all is an element of D. Tolokonnikov's Lemma for H-R(infinity) means that if f is left-invertible, then f can be completed to an isomorphism; that is, there exists an F, invertible in H-R(infinity), such that F = [f f(c)] for some f(c) in H-R(infinity). In control theory, Tolokonnikov's Lemma implies that if a function has a right coprime factorization over H-R(infinity), then it has a doubly coprime factorization in H-R(infinity). We prove the lemma for the real disc algebra A(R) as well. In particular, H-R(infinity) and A(R) are Hermite rings.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 12 条
  • [1] Curtain RF., 2012, An introduction to infinite-dimensional linear systems theory
  • [2] Lam T., 1978, Lecture Notes in Mathematics, V635
  • [3] Nikolski N.K., 1986, Treatise on the Shift Operator
  • [4] NIKOLSKI NK, 2002, EASY READING, V1
  • [5] Staffans O., 2005, Encyclopedia of Mathematics and its Applications, V103
  • [6] EXTENSION PROBLEM TO AN INVERTIBLE MATRIX
    TOLOKONNIKOV, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) : 1023 - 1030
  • [7] TOLOKONNIKOV VA, 1981, STEKLOVA AKAD NAUK S, V267, P178
  • [8] Tolokonnikov VA., 1981, ZAP NAUCH SEMIN LOMI, V113, P178
  • [9] Treil S, 2004, INDIANA U MATH J, V53, P1763
  • [10] Vidyasagar M., 1985, CONTROL SYSTEM SYNTH