Examining Substrate-Induced Plasmon Mode Splitting and Localization in Truncated Silver Nanospheres with Electron Energy Loss Spectroscopy

被引:31
作者
Li, Guoliang [1 ]
Cherqui, Charles [2 ]
Wu, Yueying [3 ]
Bigelow, Nicholas W. [2 ]
Simmons, Philip D. [4 ]
Rack, Philip D. [3 ,5 ]
Masiello, David J. [2 ]
Camden, Jon P. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
GOLD NANOPARTICLES; METAL; RESONANCE; ENHANCEMENT; SCATTERING; ABSORPTION; PARTICLES; PLANAR; LIGHT; SIZE;
D O I
10.1021/acs.jpclett.5b00961
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Motivated by the need to study the size dependence of nanoparticle-substrate systems, we present a combined experimental and theoretical electron energy loss spectroscopy (EELS) study of the plasmonic spectrum of substrate-supported truncated silver nanospheres. This work spans the entire classical range of plasmonic behavior probing particles of 20-1000 nm in diameter, allowing us to map the evolution of localized surface plasmons into surface plasmon polaritons and study the size dependence of substrate-induced mode splitting. This work constitutes the first nanoscopic characterization and imaging of these effects in truncated nanospheres, setting the stage for the systematic study of plasmon-mediated energy transfer in nanoparticle-substrate systems.
引用
收藏
页码:2569 / 2576
页数:8
相关论文
共 62 条
[1]   Electron-energy losses in hemispherical targets [J].
Aizpurua, J ;
Rivacoba, A ;
Apell, SP .
PHYSICAL REVIEW B, 1996, 54 (04) :2901-2909
[2]   Focusing in on applications [J].
不详 .
NATURE NANOTECHNOLOGY, 2015, 10 (01) :1-1
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[4]   Signatures of Fano Interferences in the Electron Energy Loss Spectroscopy and Cathodoluminescence of Symmetry-Broken Nanorod Dimers [J].
Bigelow, Nicholas W. ;
Vaschillo, Alex ;
Camden, Jon P. ;
Masiello, David J. .
ACS NANO, 2013, 7 (05) :4511-4519
[5]   Characterization of the Electron- and Photon-Driven Plasmonic Excitations of Metal Nanorods [J].
Bigelow, Nicholas W. ;
Vaschillo, Alex ;
Iberi, Vighter ;
Camden, Jon P. ;
Masiello, David J. .
ACS NANO, 2012, 6 (08) :7497-7504
[6]   Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures [J].
Chen, Hao Ming ;
Chen, Chih Kai ;
Chen, Chih-Jung ;
Cheng, Liang-Chien ;
Wu, Pin Chieh ;
Cheng, Bo Han ;
Ho, You Zhe ;
Tseng, Ming Lun ;
Hsu, Ying-Ya ;
Chan, Ting-Shan ;
Lee, Jyh-Fu ;
Liu, Ru-Shi ;
Tsai, Din Ping .
ACS NANO, 2012, 6 (08) :7362-7372
[7]   Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides [J].
Chen, Jing ;
Smolyakov, Gennady A. ;
Brueck, Steven R. J. ;
Malloy, Kevin J. .
OPTICS EXPRESS, 2008, 16 (19) :14902-14909
[8]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]
[9]   Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor [J].
Cushing, Scott K. ;
Li, Jiangtian ;
Meng, Fanke ;
Senty, Tess R. ;
Suri, Savan ;
Zhi, Mingjia ;
Li, Ming ;
Bristow, Alan D. ;
Wu, Nianqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (36) :15033-15041
[10]   Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model [J].
Dionne, JA ;
Sweatlock, LA ;
Atwater, HA ;
Polman, A .
PHYSICAL REVIEW B, 2005, 72 (07)