共 50 条
Chemical nature of the enhanced energy storage in A-site defect engineered Bi0.5Na0.5TiO3-based relaxor ferroelectrics
被引:38
作者:
Wu, Lulu
[1
]
Zhang, Jingji
[1
]
Du, Huiwei
[1
]
Chen, Junfu
[1
]
Yu, Huanan
[1
]
Liu, Yapi
[1
]
Wang, Jiangying
[1
]
Zhou, Yun
[2
]
Yao, Yaxuan
[3
]
Zhai, Jiwei
[4
]
机构:
[1] China Jiliang Univ, Coll Mat & Chem, Hangzhou 310018, Peoples R China
[2] China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
[3] Natl Inst Metrol, Ctr Adv Measurement Sci, Beijing 100029, Peoples R China
[4] Tongji Univ, Sch Mat Sci & Engn, Shanghai Key Lab R&D & Applicat Metall Funct Mat, Funct Mat Res Lab, Shanghai 201804, Peoples R China
关键词:
Bi0.5Na0.5TiO3-based ceramics;
Relaxor;
Energy storage;
Oxygen vacancy;
LEAD-FREE CERAMICS;
LOW ELECTRIC-FIELD;
BREAKDOWN STRENGTH;
GRAIN-SIZE;
DENSITY;
EFFICIENCY;
ULTRAHIGH;
PERFORMANCE;
STABILITY;
EPR;
D O I:
10.1016/j.jallcom.2022.164183
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Defect engineering has attracted significant interest in perovskite oxides because it can be applied to op-timize the content of intrinsic oxygen vacancies (V-O) for improving their recoverable energy-storage density (W-rec). Herein, we design 0.84Bi(0.5+x)Na(0.5-x)TiO(3)-0.16KNbO(3) (-0.02 <=& nbsp;x <=& nbsp;0.08) relaxor ferroelectric ceramics with A-site defects and discuss the influence of VO on W-rec. The composition with x = 0.02 has a high W-rec (3.35 J/cm(3)) as well as a high efficiency (eta = 91%) at 240 kV/cm, and exhibits excellent temperature, fre-quency, and fatigue stabilities. This optimized composition also provides a large discharge-energy-density (W-D = 1.0 J/cm(3)), a high power-density (P-D = 66 MW/cm(3)), a fast discharge-rate (122 ns) at 150 kV/cm, and favorable temperature-induced charge-discharge properties (CDPs). Electron paramagnetic resonance, X-ray photoelectron, and Raman spectroscopic results reveal that the outstanding comprehensive perfor-mance of the designed materials is attributed to the coupling effect of low contents of dimeric (Ti'(Ti -& nbsp;) V-O center dot )(x) & BULL; clusters and high contents of trimeric (Ti'(Ti)& nbsp;- V-O center dot center dot & nbsp;- Ti'(Ti))(x) clusters. This work provides key insights relevant for developing lead-free ceramics with excellent energy-storage properties (ESPs). (C)& nbsp;2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条