Deep learning-based super-resolution in coherent imaging systems

被引:115
|
作者
Liu, Tairan [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Wei, Zhensong [1 ]
Zeng, Xin [1 ]
Zhang, Yibo [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
WIDE-FIELD; PIXEL SUPERRESOLUTION; DIGITAL HOLOGRAPHY; PHASE RETRIEVAL; MICROSCOPY; LOCALIZATION; RECOVERY;
D O I
10.1038/s41598-019-40554-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a deep learning framework based on a generative adversarial network (GAN) to perform super-resolution in coherent imaging systems. We demonstrate that this framework can enhance the resolution of both pixel size-limited and diffraction-limited coherent imaging systems. The capabilities of this approach are experimentally validated by super-resolving complex-valued images acquired using a lensfree on-chip holographic microscope, the resolution of which was pixel size-limited. Using the same GAN-based approach, we also improved the resolution of a lens-based holographic imaging system that was limited in resolution by the numerical aperture of its objective lens. This deep learning-based super-resolution framework can be broadly applied to enhance the space-bandwidth product of coherent imaging systems using image data and convolutional neural networks, and provides a rapid, non-iterative method for solving inverse image reconstruction or enhancement problems in optics.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Deep learning-based magnetic resonance image super-resolution: a survey
    Ji Z.
    Zou B.
    Kui X.
    Liu J.
    Zhao W.
    Zhu C.
    Dai P.
    Dai Y.
    Neural Computing and Applications, 2024, 36 (21) : 12725 - 12752
  • [22] Influence of deep learning-based super-resolution reconstruction on Agatston score
    Morikawa, Tomoro
    Tanabe, Yuki
    Suekuni, Hiroshi
    Fukuyama, Naoki
    Toshimori, Wataru
    Toritani, Hidetaka
    Sawada, Shun
    Matsuda, Takuya
    Nakano, Shota
    Kido, Teruhito
    EUROPEAN RADIOLOGY, 2025,
  • [23] DEEP LEARNING-BASED SUPER-RESOLUTION ULTRASOUND SPECKLE TRACKING VELOCIMETRY
    Park, Jun Hong
    Choi, Woorak
    Yoon, Gun Young
    Lee, Sang Joon
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (03): : 598 - 609
  • [24] A comprehensive review of deep learning-based single image super-resolution
    Bashir, Syed Muhammad Arsalan
    Wang, Yi
    Khan, Mahrukh
    Niu, Yilong
    PEERJ COMPUTER SCIENCE, 2021,
  • [25] Learning-Based Nonparametric Image Super-Resolution
    Shyamsundar Rajaram
    Mithun Das Gupta
    Nemanja Petrovic
    Thomas S. Huang
    EURASIP Journal on Advances in Signal Processing, 2006
  • [26] Learning-based nonparametric image super-resolution
    Rajaram, Shyamsundar
    Das Gupta, Mithun
    Petrovic, Nemanja
    Huang, Thomas S.
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1) : 1 - 11
  • [27] Local Learning-Based Image Super-Resolution
    Lu, Xiaoqiang
    Yuan, Haoliang
    Yuan, Yuan
    Yan, Pingkun
    Li, Luoqing
    Li, Xuelong
    2011 IEEE 13TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2011,
  • [28] A Super-Resolution Method based on Coherent Fourier Imaging
    Yuan, Hui
    Roskos, Hartmut G.
    2024 49TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ 2024, 2024,
  • [29] Deep Learning for Subsurface Penetrating Super-Resolution Imaging
    Zhang, Yan
    Xiao, Zelong
    Wu, Li
    Lu, Xuan
    Wang, Yuankai
    2017 10TH UK-EUROPE-CHINA WORKSHOP ON MILLIMETRE WAVES AND TERAHERTZ TECHNOLOGIES (UCMMT), 2017,
  • [30] DEEP LEARNING FOR SUPER-RESOLUTION VASCULAR ULTRASOUND IMAGING
    van Sloun, Ruud J. G.
    Solomon, Oren
    Bruce, Matthew
    Khaing, Zin Z.
    Eldar, Yonina C.
    Mischi, Massimo
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1055 - 1059