Deep learning-based super-resolution in coherent imaging systems

被引:116
作者
Liu, Tairan [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Wei, Zhensong [1 ]
Zeng, Xin [1 ]
Zhang, Yibo [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
WIDE-FIELD; PIXEL SUPERRESOLUTION; DIGITAL HOLOGRAPHY; PHASE RETRIEVAL; MICROSCOPY; LOCALIZATION; RECOVERY;
D O I
10.1038/s41598-019-40554-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a deep learning framework based on a generative adversarial network (GAN) to perform super-resolution in coherent imaging systems. We demonstrate that this framework can enhance the resolution of both pixel size-limited and diffraction-limited coherent imaging systems. The capabilities of this approach are experimentally validated by super-resolving complex-valued images acquired using a lensfree on-chip holographic microscope, the resolution of which was pixel size-limited. Using the same GAN-based approach, we also improved the resolution of a lens-based holographic imaging system that was limited in resolution by the numerical aperture of its objective lens. This deep learning-based super-resolution framework can be broadly applied to enhance the space-bandwidth product of coherent imaging systems using image data and convolutional neural networks, and provides a rapid, non-iterative method for solving inverse image reconstruction or enhancement problems in optics.
引用
收藏
页数:13
相关论文
共 41 条
  • [1] Phase retrieval from series of images obtained by defocus variation
    Allen, LJ
    Oxley, MP
    [J]. OPTICS COMMUNICATIONS, 2001, 199 (1-4) : 65 - 75
  • [2] [Anonymous], OPTICA
  • [3] Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution
    Bishara, Waheb
    Su, Ting-Wei
    Coskun, Ahmet F.
    Ozcan, Aydogan
    [J]. OPTICS EXPRESS, 2010, 18 (11): : 11181 - 11191
  • [4] Pixel super-resolution in digital holography by regularized reconstruction
    Fournier, C.
    Jolivet, F.
    Denis, L.
    Verrier, N.
    Thiebaut, E.
    Allier, C.
    Fournel, T.
    [J]. APPLIED OPTICS, 2017, 56 (01) : 69 - 77
  • [5] A NEW MICROSCOPIC PRINCIPLE
    GABOR, D
    [J]. NATURE, 1948, 161 (4098) : 777 - 778
  • [6] Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
  • [7] Goodman J. W., 2005, INTRO FOURIER OPTICS
  • [8] Goodman J. W., 2015, STAT OPTICS
  • [9] Wide-field computational imaging of pathology slides using lens-free on-chip microscopy
    Greenbaum, Alon
    Zhang, Yibo
    Feizi, Alborz
    Chung, Ping-Luen
    Luo, Wei
    Kandukuri, Shivani R.
    Ozcan, Aydogan
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (267)
  • [10] Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy
    Greenbaum, Alon
    Luo, Wei
    Su, Ting-Wei
    Goeroecs, Zoltan
    Xue, Liang
    Isikman, Serhan O.
    Coskun, Ahmet F.
    Mudanyali, Onur
    Ozcan, Aydogan
    [J]. NATURE METHODS, 2012, 9 (09) : 889 - 895