Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters

被引:30
作者
Golombek, MP [1 ]
Tanaka, KL [1 ]
Franklin, BJ [1 ]
机构
[1] US GEOL SURVEY, BRANCH ASTROGEOL, FLAGSTAFF, AZ 86001 USA
关键词
D O I
10.1029/96JE02709
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Two independent methods, with no common assumptions, have been used to estimate the extension across the heavily deformed Tempe Terra province of the Tharsis region of Mars. One method uses measurements of normal fault scarp width with average scarp slope data for simple grabens and rifts on Mars to estimate the fault throw, which, combined with sparse fault dip data, can be used to estimate extension. Formal uncertainties in this method are only slightly greater than those in other methods, given that the total uncertainty is dominated by the likely uncertainty in the fault dip (assumed to be 60 degrees +/- 15 degrees). Measurement of normal fault scarp widths along two N25 degrees-50 degrees W directed traverses across Tempe Terra both yield about 22 +/- 16 km of extension (or similar to 2% strain across the northern traverse and nearly 3% across the southern one). About three quarters of the extension has occurred during the two main phases of Tharsis-related deformation from Middle/Late Noachian to Early Hesperian and from Late Hesperian to Early Amazonian, with mow extension closer to the center of Tharsis during the first phase. Extension across the region was also determined by measuring the elongation and elongation direction of all ancient Noachian impact craters without ejecta blankets, which predate most of the deformation. Results have been corrected for initial non circularity of craters, established from similar measurements of young (post deformation) impact craters, yielding a statistically significant mean strain of 1.96 +/- 0.35% in a N38 degrees +/- 10 degrees W direction across Tempe Terra (extension of similar to 20 +/- 4, comparable in magnitude and direction to the average result from the scarp measurement method). Both methods indicate an average extension for single normal fault scarps (and shortening across wrinkle ridges for the crater method) of similar to 100 m. The agreement between the results of the two independent methods in overall extension and average single normal fault extension argues that the average scarp slope and fault dip data in the fault scarp width method accurately represent the actual extension across the observed structures. This conclusion supports existing geometric and kinematic models for structural features on Mars. A preliminary estimate of the total circumferential extension around Tharsis (at a radius of similar to 2500 km) is roughly 60 +/- 42 km; total hoop strain is about 0.4% distributed heterogeneously (Tempe Terra is the most highly strained region on Mars).
引用
收藏
页码:26119 / 26130
页数:12
相关论文
共 28 条
[1]  
BANERDT WB, 1992, MARS, P249
[2]  
Bevington R., 1969, DATA REDUCTION ERROR
[3]  
CHADWICK DJ, 1993, LUNAR PLANET SCI, V24, P263
[4]  
DAVIS JC, 1986, STATISTICS DATA ANAL
[5]   TOPOGRAPHY OF CLOSED DEPRESSIONS, SCARPS, AND GRABENS IN THE NORTH THARSIS REGION OF MARS - IMPLICATIONS FOR SHALLOW CRUSTAL DISCONTINUITIES AND GRABEN FORMATION [J].
DAVIS, PA ;
TANAKA, KL ;
GOLOMBEK, MP .
ICARUS, 1995, 114 (02) :403-422
[6]   DISCONTINUITIES IN THE SHALLOW MARTIAN CRUST AT LUNAE, SYRIA, AND SINAI PLANA [J].
DAVIS, PA ;
GOLOMBEK, MP .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B9) :14231-14248
[7]  
DAVIS PA, 1993, LUNAR PLANET SCI, V24, P381
[8]   RESURFACING HISTORY OF TEMPE TERRA AND SURROUNDINGS [J].
FREY, HV ;
GRANT, TD .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B9) :14249-14263
[9]   STRUCTURAL-ANALYSIS OF LUNAR GRABENS AND THE SHALLOW CRUSTAL STRUCTURE OF THE MOON [J].
GOLOMBEK, MP .
JOURNAL OF GEOPHYSICAL RESEARCH, 1979, 84 (NB9) :4657-4666
[10]  
GOLOMBEK MP, 1991, P LUNAR PLANET SCI, V21, P679