Focal Cosine Metric and Adaptive Attention Module for Remote Sensing Scene Classification With Siamese Convolutional Neural Networks

被引:0
|
作者
Min, Lei [1 ]
Gao, Kun [1 ]
Wang, Hong [1 ]
Liu, Yutong [1 ]
Zhang, Zhenzhou [1 ]
Hu, Zibo [1 ]
Zhang, Xiaodian [1 ]
机构
[1] Beijing Inst Technol, Key Lab Photoelect Imaging Technol & Syst, Minist Educ China, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Image analysis; Measurement; Adaptation models; Task analysis; Feature extraction; Convolutional neural networks; Semantics; Remote sensing scene classification; Siamese convolutional neural network; focal cosine metric; adaptive attention; SCALE; FEATURES;
D O I
10.1109/ACCESS.2022.3188652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) have been widely used in remote sensing (RS) scene classification tasks due to their remarkable feature representation and inference capability. The complexity of RS images not only brings the challenges of high inter-class similarity and large intra-class diversity, but also introduces the problem that category-relevant regions are insufficiently prominent in feature extraction. Siamese CNNs with feature similarity measurement are chosen in some applications to overcome the former issue, but most ignore the randomness of input sample pairs. This makes the Siamese CNNs not focus enough on challenging samples, which limits the training efficiency. We propose the focal cosine metric (FCM) block that combines the cosine similarity metric and the threshold control to achieve sample selection, thereby completing network learning more efficiently. FCM only permits the misclassified focal samples to participate in similarity measurement based on Siamese CNN. It flexibly mitigates the misclassification caused by the high inter-class similarity and large intra-class diversity. Moreover, the adaptive attention (AA) module is designed to stress the pivotal target regions and assist in the similarity measurement of Siamese CNN. This is realized by adaptively assigning high weights to key targets with learnable guided vectors. It enables the model to focus on the details of intra-class similarities or inter-class differences in sample pairs, and thus reduces the difficulty of model optimization. Encouraging experimental results on three public data sets demonstrate the effectiveness of the novel Siamese CNN-based method with FCM and AA and show its superiority compared to other state-of-the-art scene classification methods.
引用
收藏
页码:84212 / 84226
页数:15
相关论文
共 50 条
  • [1] Towards better exploiting convolutional neural networks for remote sensing scene classification
    Nogueira, Keiller
    Penatti, Otavio A. B.
    dos Santos, Jefersson A.
    PATTERN RECOGNITION, 2017, 61 : 539 - 556
  • [2] Cosine Margin Prototypical Networks for Remote Sensing Scene Classification
    Zhang, Xiang
    Wei, Tianyu
    Liu, Wenchao
    Xie, Yizhuang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Relation-Attention Networks for Remote Sensing Scene Classification
    Wang, Xin
    Duan, Lin
    Ning, Chen
    Zhou, Huiyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 422 - 439
  • [4] Efficient Convolutional Neural Architecture Search for Remote Sensing Image Scene Classification
    Peng, Cheng
    Li, Yangyang
    Jiao, Licheng
    Shang, Ronghua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6092 - 6105
  • [5] A Multiscale Attention Network for Remote Sensing Scene Images Classification
    Zhang, Guokai
    Xu, Weizhe
    Zhao, Wei
    Huang, Chenxi
    Ng, Eddie Yk
    Chen, Yongyong
    Su, Jian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9530 - 9545
  • [6] Triplet-Metric-Guided Multi-Scale Attention for Remote Sensing Image Scene Classification with a Convolutional Neural Network
    Wang, Hong
    Gao, Kun
    Min, Lei
    Mao, Yuxuan
    Zhang, Xiaodian
    Wang, Junwei
    Hu, Zibo
    Liu, Yutong
    REMOTE SENSING, 2022, 14 (12)
  • [7] A Deformable Convolutional Neural Network with Spatial-Channel Attention for Remote Sensing Scene Classification
    Wang, Di
    Lan, Jinhui
    REMOTE SENSING, 2021, 13 (24)
  • [8] Self-Attention Network With Joint Loss for Remote Sensing Image Scene Classification
    Wu, Honglin
    Zhao, Shuzhen
    Li, Liang
    Lu, Chaoquan
    Chen, Wen
    IEEE ACCESS, 2020, 8 : 210347 - 210359
  • [9] Hierarchical Attention and Bilinear Fusion for Remote Sensing Image Scene Classification
    Yu, Donghang
    Guo, Haitao
    Xu, Qing
    Lu, Jun
    Zhao, Chuan
    Lin, Yuzhun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 6372 - 6383
  • [10] SEMSDNet: A Multiscale Dense Network With Attention for Remote Sensing Scene Classification
    Tian, Tian
    Li, Lingling
    Chen, Weitao
    Zhou, Huabing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5501 - 5514