Production of Fumaric Acid by Rhizopus arrhizus NRRL 1526: A Simple Production Medium and the Kinetic Modelling of the Bioprocess

被引:6
作者
Martin-Dominguez, Victor [1 ]
Cabrera, Paula I. Aleman [1 ]
Eidt, Laslo [2 ]
Pruesse, Ulf [2 ]
Kuenz, Anja [2 ]
Ladero, Miguel [1 ]
Santos, Victoria E. [1 ]
机构
[1] Univ Complutense Madrid, Chem Sci Sch, Mat & Chem Engn Dept, FQPIMA Grp, Madrid 28040, Spain
[2] Thunen Inst Agr Technol, D-38116 Braunschweig, Germany
来源
FERMENTATION-BASEL | 2022年 / 8卷 / 02期
关键词
fumaric acid; Rhizopus arrhizus; kinetic modelling; fermentation; LASER REFLECTANCE; ORYZAE; FERMENTATION; CARBONATE; STRATEGY; WASTE;
D O I
10.3390/fermentation8020064
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fumaric acid is a promising monomer to obtain biomass-based polyesters and polyamides, and it is mainly produced by fungi of the Rhizopus genus in medium to high titters. The use of glucose, a main component of starchy and cellulosic food waste, as carbon source, together with a low-nitrogen source concentration, is a promising route to reduce process costs. In this work, the effects of nitrogen and carbonate sources on Rhizopus arrhizus NRRL 1526 morphology and fumaric acid productivity were analysed, simplifying the traditional production broth composition. Moreover, a non-structured, non-segregated kinetic model was proposed and fitted to concentration data of all relevant components obtained in batches performed in triplicate with the selected production broth at 34 degrees C and 200 rpm in an orbital shaker.
引用
收藏
页数:18
相关论文
共 43 条
  • [1] Abraham A, 2020, INDIAN J EXP BIOL, V58, P548
  • [2] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [3] Das R.K., 2016, FUMARIC ACID
  • [4] Enhanced Fumaric Acid Production from Brewery Wastewater and Insight into the Morphology of Rhizopus oryzae 1526
    Das, Ratul Kumar
    Brar, Satinder Kaur
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 172 (06) : 2974 - 2988
  • [5] Utilisation/upgrading of orange peel waste from a biological biorefinery perspective
    de la Torre, I.
    Martin-Dominguez, V.
    Acedos, M. G.
    Esteban, J.
    Santos, V. E.
    Ladero, M.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (15) : 5975 - 5991
  • [6] Production of D-lactic acid by Lactobacillus delbrueckii ssp delbrueckii from orange peel waste: techno-economical assessment of nitrogen sources
    de la Torre, I.
    Ladero, M.
    Santos, V. E.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (24) : 10511 - 10521
  • [7] Eidt L., 2021, THESIS TU BRAUNSCHWE
  • [8] El-Enshasy HA, 2007, BIOPROCESSING FOR VALUE-ADDED PRODUCTS FROM RENEWABLE RESOURCES: NEW TECHNOLOGIES AND APPLICATIONS, P225, DOI 10.1016/B978-044452114-9/50010-4
  • [9] Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae
    Engel, Carol A. Roa
    van Gulik, Walter M.
    Marang, Leonie
    van der Wielen, Luuk A. M.
    Straathof, Adrie J. J.
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2011, 48 (01) : 39 - 47
  • [10] Food waste as a source of value-added chemicals and materials: abiorefinery perspective
    Esteban, Jesus
    Ladero, Miguel
    [J]. INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2018, 53 (05) : 1095 - 1108