A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors

被引:94
|
作者
Cunha Palacios, Rodrigo H. [1 ,2 ]
da Silva, Ivan Nunes [1 ]
Goedtel, Alessandro [2 ]
Godoy, Wagner F. [1 ,2 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect Engn, BR-13 56659 Sao Carlos, SP, Brazil
[2] Fed Technol Univ Parana UTFPR, Dept Elect Engn, BR-86300000 Cornelli Procopio, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
Three-phase induction motor; Pattern recognition; Rotor; Stator; Bearing; Fault; SUPPORT VECTOR MACHINE; NEAREST-NEIGHBOR; DIAGNOSIS; CLASSIFICATION; ANN;
D O I
10.1016/j.epsr.2015.06.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Three-phase induction motors are the key elements of electromechanical energy conversion for a variety of industrial sectors. The ability to identify motor faults before they occur can reduce the risks in decisions regarding machine maintenance, lower costs, and increase process availability. This article proposes a comprehensive evaluation of pattern classification methods for fault identification in induction motors. The methods discussed in this work are: Naive Bayes, k-Nearest Neighbor, Support Vector Machine (Sequential Minimal Optimization), Artificial Neural Network (Multilayer Perceptron), Repeated Incremental Pruning to Produce Error Reduction, and C4.5 Decision Tree. By analyzing the amplitudes of current signals in the time domain, experimental results with bearing, stator, and rotor faults are tested using different pattern classification methods under varied power supply and mechanical loading conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 50 条
  • [1] Three-phase induction motor fault identification using optimization algorithms and intelligent systems
    Guedes, Jacqueline Jordan
    Goedtel, Alessandro
    Castoldi, Marcelo Favoretto
    Sanches, Danilo Sipoli
    Serni, Paulo Jose Amaral
    Rezende, Agnes Fernanda Ferreira
    Bazan, Gustavo Henrique
    de Souza, Wesley Angelino
    SOFT COMPUTING, 2024, 28 (9-10) : 6709 - 6724
  • [2] Bearing fault identification of three-phase induction motors bases on two current sensor strategy
    Lopes, Tiago Drummond
    Goedtel, Alessandro
    Cunha Palacios, Rodrigo Henrique
    Godoy, Wagner Fontes
    de Souza, Roberto Molina
    SOFT COMPUTING, 2017, 21 (22) : 6673 - 6685
  • [3] An improved combination of Hilbert and Park transforms for fault detection and identification in three-phase induction motors
    Bacha, Khmais
    Ben Salem, Samira
    Chaari, Abdelkader
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 43 (01) : 1006 - 1016
  • [4] Neural Approach to Fault Detection in Three-Phase Induction Motors
    Gongora, W. S.
    Goedtel, A.
    da Silva, S. A. O.
    Graciola, C. L.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (03) : 1279 - 1288
  • [5] Mutual Information and Meta-Heuristic Classifiers Applied to Bearing Fault Diagnosis in Three-Phase Induction Motors
    Bazan, Gustavo Henrique
    Goedtel, Alessandro
    Castoldi, Marcelo Favoretto
    Godoy, Wagner Fontes
    Duque-Perez, Oscar
    Morinigo-Sotelo, Daniel
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 17
  • [6] Real-Time Neural Classifiers for Sensor and Actuator Faults in Three-Phase Induction Motors
    Sanchez, Oscar D.
    Martinez-Soltero, Gabriel
    Alvarez, Jesus G.
    Alanis, Alma Y.
    MACHINES, 2022, 10 (12)
  • [7] Bearing fault identification of three-phase induction motors bases on two current sensor strategy
    Tiago Drummond Lopes
    Alessandro Goedtel
    Rodrigo Henrique Cunha Palácios
    Wagner Fontes Godoy
    Roberto Molina de Souza
    Soft Computing, 2017, 21 : 6673 - 6685
  • [8] Bearing Fault Detection in Three-Phase Induction Motors Using Support Vector Machine and Fiber Bragg Grating
    Brusamarello, Beatriz
    da Silva, Jean Carlos Cardozo
    Sousa, Kleiton de Morais
    Guarneri, Giovanni Alfredo
    IEEE SENSORS JOURNAL, 2023, 23 (05) : 4413 - 4421
  • [9] Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors
    Godoy, Wagner Fontes
    Morinigo-Sotelo, Daniel
    Duque-Perez, Oscar
    da Silva, Ivan Nunes
    Goedtel, Alessandro
    Cunha Palacios, Rodrigo Henrique
    ENERGIES, 2020, 13 (13)
  • [10] Stator fault analysis of three-phase induction motors using information measures and artificial neural networks
    Bazan, Gustavo Henrique
    Scalassara, Paulo Rogerio
    Endo, Wagner
    Goedtel, Alessandro
    Godoy, Wagner Fontes
    Cunha Palacios, Rodrigo Henrique
    ELECTRIC POWER SYSTEMS RESEARCH, 2017, 143 : 347 - 356