A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors

被引:95
作者
Cunha Palacios, Rodrigo H. [1 ,2 ]
da Silva, Ivan Nunes [1 ]
Goedtel, Alessandro [2 ]
Godoy, Wagner F. [1 ,2 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect Engn, BR-13 56659 Sao Carlos, SP, Brazil
[2] Fed Technol Univ Parana UTFPR, Dept Elect Engn, BR-86300000 Cornelli Procopio, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
Three-phase induction motor; Pattern recognition; Rotor; Stator; Bearing; Fault; SUPPORT VECTOR MACHINE; NEAREST-NEIGHBOR; DIAGNOSIS; CLASSIFICATION; ANN;
D O I
10.1016/j.epsr.2015.06.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Three-phase induction motors are the key elements of electromechanical energy conversion for a variety of industrial sectors. The ability to identify motor faults before they occur can reduce the risks in decisions regarding machine maintenance, lower costs, and increase process availability. This article proposes a comprehensive evaluation of pattern classification methods for fault identification in induction motors. The methods discussed in this work are: Naive Bayes, k-Nearest Neighbor, Support Vector Machine (Sequential Minimal Optimization), Artificial Neural Network (Multilayer Perceptron), Repeated Incremental Pruning to Produce Error Reduction, and C4.5 Decision Tree. By analyzing the amplitudes of current signals in the time domain, experimental results with bearing, stator, and rotor faults are tested using different pattern classification methods under varied power supply and mechanical loading conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 46 条
[1]  
AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
[2]  
[Anonymous], 2006, Pattern recognition and machine learning
[3]   An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space [J].
Aydin, Ilhan ;
Karakose, Mehmet ;
Akin, Erhan .
ISA TRANSACTIONS, 2014, 53 (02) :220-229
[4]   Fault Diagnosis of the Asynchronous Machines Through Magnetic Signature Analysis Using Finite-Element Method and Neural Networks [J].
Barzegaran, Mohammadreza ;
Mazloomzadeh, Ali ;
Mohammed, Osama A. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2013, 28 (04) :1064-1071
[5]   Advances in Diagnostic Techniques for Induction Machines [J].
Bellini, Alberto ;
Filippetti, Fiorenzo ;
Tassoni, Carta ;
Capolino, Gerard-Andre .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (12) :4109-4126
[6]  
Bossio J., NEURAL COMPUT APPL, V23
[7]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[8]  
Cohen W.W., 1995, P 12 INT C MACH LEAR, P115, DOI [10.1016/b978-1-55860-377-6.50023-2, DOI 10.1016/B978-1-55860-377-6.50023-2]
[9]   ESTIMATION BY NEAREST NEIGHBOR RULE [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) :50-+
[10]  
Das S, 2014, IEEE T DIELECT EL IN, V21, P33, DOI [10.1109/TDEI.2013.003549, 10.1109/TDEI.2014.6740723]