共 50 条
Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling
被引:176
|作者:
Liu, Zihang
[1
]
Gao, Weihong
[1
]
Oshima, Hironori
[2
]
Nagase, Kazuo
[2
]
Lee, Chul-Ho
[2
]
Mori, Takao
[1
,3
]
机构:
[1] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki, Japan
关键词:
CARRIER SCATTERING MECHANISM;
CHARGE-TRANSPORT;
ALPHA-MGAGSB;
EFFICIENCY;
TELLURIDE;
DEVICES;
ALLOYS;
D O I:
10.1038/s41467-022-28798-4
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Although the thermoelectric effect was discovered around 200 years ago, the main application in practice is thermoelectric cooling using the traditional Bi2Te3. The related studies of new and efficient room-temperature thermoelectric materials and modules have, however, not come to fruition yet. In this work, the electronic properties of n-type Mg3.2Bi1.5Sb0.5 material are maximized via delicate microstructural design with the aim of eliminating the thermal grain boundary resistance, eventually leading to a high zT above 1 over a broad temperature range from 323 K to 423 K. Importantly, we further demonstrated a great breakthrough in the non-Bi2Te3 thermoelectric module, coupled with the high-performance p-type alpha-MgAgSb, for room-temperature power generation and thermoelectric cooling. A high conversion efficiency of similar to 2.8% at the temperature difference of 95 K and a maximum temperature difference of 56.5 K are experimentally achieved. If the interfacial contact resistance is further reduced, our non-Bi2Te3 module may rival the long-standing champion commercial Bi2Te3 system. Overall, this work represents a substantial step towards the real thermoelectric application using non-Bi2Te3 materials and devices.
引用
收藏
页数:9
相关论文