Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling

被引:209
作者
Liu, Zihang [1 ]
Gao, Weihong [1 ]
Oshima, Hironori [2 ]
Nagase, Kazuo [2 ]
Lee, Chul-Ho [2 ]
Mori, Takao [1 ,3 ]
机构
[1] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki, Japan
关键词
CARRIER SCATTERING MECHANISM; CHARGE-TRANSPORT; ALPHA-MGAGSB; EFFICIENCY; TELLURIDE; DEVICES; ALLOYS;
D O I
10.1038/s41467-022-28798-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although the thermoelectric effect was discovered around 200 years ago, the main application in practice is thermoelectric cooling using the traditional Bi2Te3. The related studies of new and efficient room-temperature thermoelectric materials and modules have, however, not come to fruition yet. In this work, the electronic properties of n-type Mg3.2Bi1.5Sb0.5 material are maximized via delicate microstructural design with the aim of eliminating the thermal grain boundary resistance, eventually leading to a high zT above 1 over a broad temperature range from 323 K to 423 K. Importantly, we further demonstrated a great breakthrough in the non-Bi2Te3 thermoelectric module, coupled with the high-performance p-type alpha-MgAgSb, for room-temperature power generation and thermoelectric cooling. A high conversion efficiency of similar to 2.8% at the temperature difference of 95 K and a maximum temperature difference of 56.5 K are experimentally achieved. If the interfacial contact resistance is further reduced, our non-Bi2Te3 module may rival the long-standing champion commercial Bi2Te3 system. Overall, this work represents a substantial step towards the real thermoelectric application using non-Bi2Te3 materials and devices.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature [J].
Agne, Matthias T. ;
Imasato, Kazuki ;
Anand, Shashwat ;
Lee, Kathleen ;
Bux, Sabah K. ;
Zevalkink, Alex ;
Rettie, Alexander J. E. ;
Chung, Duck Young ;
Kanatzidis, Mercouri G. ;
Snyder, G. Jeffrey .
MATERIALS TODAY PHYSICS, 2018, 6 :83-88
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   Spark plasma sintered Bi-Sb-Te alloys derived from ingot scrap: Maximizing thermoelectric performance by tailoring their composition and optimizing sintering time [J].
Cai, Bowen ;
Zhuang, Hua-Lu ;
Pei, Jun ;
Su, Bin ;
Li, Jing-Wei ;
Hu, Haihua ;
Jiang, Yilin ;
Li, Jing-Feng .
NANO ENERGY, 2021, 85
[4]   Excellent thermoelectric performance of boron-doped n-type Mg3Sb2-based materials via the manipulation of grain boundary scattering and control of Mg content [J].
Chen, Xiaoxi ;
Zhu, Jianbo ;
Qin, Dandan ;
Qu, Nuo ;
Xue, Wenhua ;
Wang, Yumei ;
Zhang, Qian ;
Cai, Wei ;
Guo, Fengkai ;
Sui, Jiehe .
SCIENCE CHINA-MATERIALS, 2021, 64 (07) :1761-1769
[5]   Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure [J].
Chen, Xiaoxi ;
Wu, Haijun ;
Cui, Juan ;
Xiao, Yu ;
Zhang, Yang ;
He, Jiaqing ;
Chen, Yue ;
Cao, Jian ;
Cai, Wei ;
Pennycook, Stephen J. ;
Liu, Zihang ;
Zhao, Li-Dong ;
Sui, Jiehe .
NANO ENERGY, 2018, 52 :246-255
[6]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[7]   High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe [J].
Deng, Rigui ;
Su, Xianli ;
Hao, Shiqiang ;
Zheng, Zheng ;
Zhang, Min ;
Xie, Hongyao ;
Liu, Wei ;
Yan, Yonggao ;
Wolverton, Chris ;
Uher, Ctirad ;
Kanatzidis, Mercouri G. ;
Tang, Xinfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1520-1535
[8]   Densification mechanisms in spark plasma sintering: Effect of particle size and pressure [J].
Diouf, S. ;
Molinari, A. .
POWDER TECHNOLOGY, 2012, 221 :220-227
[9]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[10]   Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation [J].
Goldsmid, H. Julian .
MATERIALS, 2014, 7 (04) :2577-2592