Existence for wave equations on domains with arbitrary growing cracks

被引:29
作者
Dal Maso, Gianni [1 ]
Larsen, Christopher J. [2 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
Wave equation; dynamic fracture mechanics; cracking domains; special functions with bounded variation; QUASI-STATIC GROWTH; BRITTLE FRACTURES; MODEL;
D O I
10.4171/RLM/606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we formulate and study scalar wave equations on domains with arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and the only assumptions on these sets are that they have bounded surface measure and are growing in the sense of set inclusion. In particular, they may be dense, so the weak formulations must fall outside of the usual weak formulations using Sobolev spaces. We study both damped and undamped equations, showing existence and, for the damped equation, uniqueness and energy conservation.
引用
收藏
页码:387 / 408
页数:22
相关论文
共 18 条
[1]  
AMBROSIO A, 1995, GAKUTO INT SER MATH, V9, P1
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[4]   The variational approach to fracture [J].
Bourdin, Blaise ;
Francfort, Gilles A. ;
Marigo, Jean-Jacques .
JOURNAL OF ELASTICITY, 2008, 91 (1-3) :5-148
[5]  
Bourdin B, 2007, INTERFACE FREE BOUND, V9, P411
[6]   A time-discrete model for dynamic fracture based on crack regularization [J].
Bourdin, Blaise ;
Larsen, Christopher J. ;
Richardson, Casey L. .
INTERNATIONAL JOURNAL OF FRACTURE, 2011, 168 (02) :133-143
[7]   A density result in two-dimensional linearized elasticity, and applications [J].
Chambolle, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 167 (03) :211-233
[8]   Crack initiation in brittle materials [J].
Chambolle, Antonin ;
Giacomini, Alessandro ;
Ponsiglione, Marcello .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 188 (02) :309-349
[9]   Quasistatic crack growth in nonlinear elasticity [J].
Dal Maso, G ;
Francfort, GA ;
Toader, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (02) :165-225
[10]   A model for the quasi-static growth of brittle fractures based on local minimization [J].
Dal Maso, G ;
Toader, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (12) :1773-1799