Rigidity of parabolic and stable spacelike hypersurfaces in a generalized Robertson-Walker spacetime

被引:0
作者
Roing, Fernanda [1 ]
Lima, Eraldo Almeida, Jr. [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58081085 Joao Pessoa, Paraiba, Brazil
关键词
Parabolic spacelike hypersurface; Generalized Robertson-Walker spacetime; Stable spacelike hypersurface; Energy conditions; CONSTANT MEAN-CURVATURE; MAXIMAL SURFACES; UNIQUENESS; STABILITY; PRINCIPLES;
D O I
10.1007/s00022-020-00540-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with a parabolic stable spacelike hypersurface immersed in a generalized Robertson-Walker spacetime. We consider the support type function as the product between the warping function and the hyperbolic cosine of the hyperbolic angle of the normal vector field with the timelike parallel direction partial differential t. We provide some conditions under which the support type function must be constant or, particularly, when the hypersurface must be a slice, yielding a Calabi-Bernstein type result.
引用
收藏
页数:19
相关论文
共 30 条
[1]   New examples of entire maximal graphs in H2 x R1 [J].
Albujer, Alma L. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) :456-462
[2]   Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces [J].
Albujer, Alma L. ;
Alias, Luis J. .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (05) :620-631
[3]   Complete spacelike hypersurfaces in generalized Robertson-Walker and the null convergence condition: Calabi-Bernstein problems [J].
Aledo, Juan A. ;
Rubio, Rafael M. ;
Salamanca, Juan J. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) :115-128
[4]   Constant mean curvature spacelike hypersurfaces in Lorentzian warped products and Calabi-Bernstein type problems [J].
Aledo, Juan A. ;
Romero, Alfonso ;
Rubio, Rafael M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 106 :57-69
[5]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[6]   On the Gaussian curvature of maximal surfaces in n-dimensional generalized Robertson-Walker spacetimes [J].
Alias, LJ ;
Estudillo, FJM ;
Romero, A .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (12) :3211-3219
[7]   Spacelike hypersurfaces of constant mean curvature in certain spacetimes [J].
Alias, LJ ;
Romero, A ;
Sanchez, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) :655-661
[8]  
Alias LJ, 2003, P EDINBURGH MATH SOC, V43, P235
[9]  
[Anonymous], 1999, Siberian Adv. Math.
[10]   A New Calabi-Bernstein Type Result in Spatially Closed Generalized Robertson-Walker Spacetimes [J].
Aquino, C. ;
Baltazar, H. ;
de Lima, H. F. .
MILAN JOURNAL OF MATHEMATICS, 2017, 85 (02) :235-245