Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method

被引:24
作者
Huang, Kai [1 ,2 ,3 ]
Yan, Jia [1 ]
Shen, Rilin [1 ]
Wan, Yulin [1 ]
Li, Yukun [1 ]
Ge, Hao [1 ]
Yu, Hongjun [1 ]
Guo, Licheng [1 ]
机构
[1] Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Ceram, Harbin 150001, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-bonded explosives (PBXs); Phase-field fracture (PFF) method; Compression loading; Viscoelasticity; Fracture; BRITTLE-FRACTURE; STABILITY ANALYSIS; FAILURE; MODEL; DAMAGE; MECHANICS; PROPAGATION; CRACKS;
D O I
10.1016/j.engfracmech.2022.108411
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Polymer-bonded explosives (PBXs) containing the energetic materials embedded in viscoelastic polymer matrix are often subjected to compressive loads in service, such as projectile penetration and drop. This study aims to investigate the fracture behavior of PBXs under compression by implementing a viscoelastic phase-field fracture (PFF) method. The mesh size and characteristic length scale of the present model are determined and further validated by comparing with experimental results. The influence of the viscoelasticity of the polymer matrix and heterogeneous microstructures on the fracture behavior of PBXs is comprehensively discussed. The results show that the strength and stiffness increase with an increasing strain rate; however, the failure strain increases at first and then decreases, which shows typical strain rate sensitivity. It is also found that the size and volume fraction of particulates have different effects on the fracture behavior of PBXs, i.e., the failure strength decreases with the increase of particulate size, but increases with the increase of particulate volume fraction. This study could lay the foundation for optimizing the structural design of high-performance PBXs.
引用
收藏
页数:16
相关论文
共 56 条
[1]   A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case [J].
Alessi, Roberto ;
Vidoli, Stefano ;
De Lorenzis, Laura .
ENGINEERING FRACTURE MECHANICS, 2018, 190 :53-73
[2]   Stability analysis of the phase-field method for fracture with a general degradation function and plasticity induced crack generation [J].
Arriaga, Miguel ;
Waisman, Haim .
MECHANICS OF MATERIALS, 2018, 116 :33-48
[3]   Combined stability analysis of phase-field dynamic fracture and shear band localization [J].
Arriaga, Miguel ;
Waisman, Haim .
INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 96 :81-119
[4]  
Barenblatt GI, 1962, Advances in Applied Mechanics, V7, P55, DOI [DOI 10.1016/S0065-2156(08)70121-2, 10.1016/S0065-2156(08)70121-2]
[5]   Energy localization in HMX-Estane polymer-bonded explosives during impact loading [J].
Barua, A. ;
Horie, Y. ;
Zhou, M. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (05)
[6]   A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives [J].
Barua, Ananda ;
Zhou, Min .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (05)
[7]  
Blumenthal WR, 2000, AIP CONF PROC, V505, P671
[8]  
Bocchieri RT, S TIM DEP NONL EFF P, DOI [10.1520/STP15837S, DOI 10.1520/STP15837S]
[9]   A phase-field description of dynamic brittle fracture [J].
Borden, Michael J. ;
Verhoosel, Clemens V. ;
Scott, Michael A. ;
Hughes, Thomas J. R. ;
Landis, Chad M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 :77-95
[10]   Numerical experiments in revisited brittle fracture [J].
Bourdin, B ;
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) :797-826