Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches

被引:24
|
作者
Lubken, Rafiq M. [2 ,3 ]
de Jong, Arthur M. [2 ,4 ]
Prins, Menno W. J. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, Dept Biomed Engn, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, ICMS, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Biomed Engn, NL-5600 MB Eindhoven, Netherlands
[4] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
multiplexing; single-molecule biosensing; continuous biosensing; kinetic identification;
D O I
10.1021/acs.nanolett.9b04561
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-molecule techniques have become impactful in bioanalytical sciences, though the advantages for continuous biosensing are yet to be discovered. Here we present a multiplexed, continuous biosensing method, enabled by an analyte-sensitive, single-molecular nanoswitch with a particle as a reporter. The nanoswitch opens and closes under the influence of single target molecules. This reversible switching yields binary transitions between two highly reproducible states, enabling reliable quantification of the single-molecule kinetics. The multiplexing functionality is encoded per particle via the dissociation characteristics of the nanoswitch, while the target concentration is revealed by the association characteristics. We demonstrate by experiments and simulations the multiplexed, continuous monitoring of oligonucleotide targets, at picomolar concentrations in buffer and in filtered human blood plasma.
引用
收藏
页码:2296 / 2302
页数:7
相关论文
共 50 条
  • [1] Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
    Bell N.A.W.
    Keyser U.F.
    Nature Nanotechnology, 2016, 11 (7) : 645 - 651
  • [2] Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
    Bell, Nicholas A. W.
    Keyser, Ulrich F.
    NATURE NANOTECHNOLOGY, 2016, 11 (07) : 645 - +
  • [3] Single-molecule field-effect transistors: carbon nanotube devices for temporally encoded biosensing
    Lynall, D.
    Shepard, K. L.
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [4] Nanopore/electrode structures for single-molecule biosensing
    Ayub, Mariam
    Ivanov, Aleksandar
    Instuli, Emanuele
    Cecchini, Michael
    Chansin, Guillaume
    McGilvery, Catriona
    Hong, Jongin
    Baldwin, Geoff
    McComb, David
    Edel, Joshua B.
    Albrecht, Tim
    ELECTROCHIMICA ACTA, 2010, 55 (27) : 8237 - 8243
  • [5] Multiplexed single-molecule measurements with magnetic tweezers
    Ribeck, Noah
    Saleh, Omar A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (09):
  • [6] DNA nanotechnology enhanced single-molecule biosensing and imaging
    Fu, Shengnan
    Zhang, Tengfang
    Jiang, Huanling
    Xu, Yan
    Chen, Jing
    Zhang, Linghao
    Su, Xin
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 140
  • [7] Novel Synthetic Nanopores for Single-Molecule Biosensing Applications
    Mojtabavi, Mehrnaz
    Wanunu, Meni
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 98A - 98A
  • [8] Evanescent single-molecule biosensing with quantum limited precision
    Mauranyapin, N. P.
    Taylor, M. A.
    Madsen, L. S.
    Waleed, M.
    Bowen, W. P.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [9] Ultrasensitive biosensing with single-molecule/particle digital counting
    Wei, Lin
    Ye, Zhongju
    Zhang, Chen
    Liu, Hua
    Yuan, Jie
    Xiao, Lehui
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 162
  • [10] Decoding aptamer-protein binding kinetics for continuous biosensing using single-molecule techniques
    Filius, Mike
    Fasching, Lena
    van Wee, Raman
    Rwei, Alina Y.
    Joo, Chirlmin
    SCIENCE ADVANCES, 2025, 11 (07):