Normal structure and the arc length in Banach spaces

被引:7
作者
Gao, J [1 ]
机构
[1] Community Coll Philadelphia, Dept Math, Philadelphia, PA 19130 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2001年 / 5卷 / 02期
关键词
arc length; modulus of convexity; normal structure; uniformly nonsquare space; uniform normal structure and ultraproduct space;
D O I
10.11650/twjm/1500407342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space, X-2 subset of or equal to X be a two dimensional subspace of X, and S(X) = {x is an element of X, //x// = 1} be the unit sphere of X. The relationship between the normal structure and the arc length in X is studied. Let R(X) = inf{l(S(X-2)) - r(X-2) : X-2 subset of or equal to X}, where l(S(X-2)) is the circumference of S(X-2) and r(X-2) = sup{2(//x + y// + //x - y//) : x,y is an element of S(X-2)} is the least upper bound of the perimeters of the inscribed parallelogram of S(X-2). The main result is that R(X) > 0 implies X has the uniform normal structure.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 16 条
[1]  
Brodskii M.S., 1948, Dokl. Akad. Nauk SSSR, V59, P837
[2]  
Buseman H., 1955, GEOMETRY GEODESICS
[3]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[4]  
Day MM, 1973, Normed linear spaces, P27
[5]   ON 2 CLASSES OF BANACH-SPACES WITH UNIFORM NORMAL STRUCTURE [J].
GAO, J ;
LAU, KS .
STUDIA MATHEMATICA, 1991, 99 (01) :41-56
[6]  
Huff R., 1980, Rocky Mt. J. Math., V10, P743
[7]   UNIFORMLY NON-SQUARE BANACH SPACES [J].
JAMES, RC .
ANNALS OF MATHEMATICS, 1964, 80 (03) :542-&
[8]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&
[9]   NORMAL STRUCTURE AND THE SUM-PROPERTY [J].
LANDES, TR .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (01) :127-147
[10]  
Lindenstrauss J., 1979, ERGEB MATH GRENZGEB, V97