Weakly Supervised Deep Learning Approach to Breast MRI Assessment
被引:22
|
作者:
Liu, Michael Z.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USAColumbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
Liu, Michael Z.
[1
]
Swintelski, Cara
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Radiol, Med Ctr, New York, NY 10032 USAColumbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
Swintelski, Cara
[2
]
Sun, Shawn
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Coll Phys & Surg, New York, NY 10027 USAColumbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
Sun, Shawn
[3
]
Siddique, Maham
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Radiol, Med Ctr, New York, NY 10032 USAColumbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
Siddique, Maham
[2
]
Desperito, Elise
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Radiol, Med Ctr, New York, NY 10032 USAColumbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
Desperito, Elise
[2
]
Jambawalikar, Sachin
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USAColumbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
Jambawalikar, Sachin
[1
]
Ha, Richard
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Breast Imaging Sect, Res & Educ, New York Presbyterian Hosp,Med Ctr, New York, NY 10032 USAColumbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
Ha, Richard
[4
]
机构:
[1] Columbia Univ, Dept Med Phys, Med Ctr, New York, NY 10032 USA
[2] Columbia Univ, Dept Radiol, Med Ctr, New York, NY 10032 USA
[3] Columbia Univ, Coll Phys & Surg, New York, NY 10027 USA
[4] Columbia Univ, Breast Imaging Sect, Res & Educ, New York Presbyterian Hosp,Med Ctr, New York, NY 10032 USA
Deep learning;
breast MRI;
breast cancer;
neural network;
weakly supervised;
CANCER;
WOMEN;
MAMMOGRAPHY;
ACCURACY;
DENSITY;
D O I:
10.1016/j.acra.2021.03.032
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Rationale and Objectives: To evaluate a weakly supervised deep learning approach to breast Magnetic Resonance Imaging (MRI) assessment without pixel level segmentation in order to improve the specificity of breast MRI lesion classification. Materials and Methods: In this IRB approved study, the dataset consisted of 278,685 image slices from 438 patients. The weakly supervised network was based on the Resnet-101 architecture. Training was implemented using the Adam optimizer and a final SoftMax score threshold of 0.5 was used for two class classification (malignant or benign). 278,685 image slices were combined into 92,895 3-channel images. 79,871 (85%) images were used for training and validation while 13,024 (15%) images were separated for testing. Of the testing dataset, 11,498 (88%) were benign and 1531 (12%) were malignant. Model performance was assessed. Results: The weakly supervised network achieved an AUC of 0.92 (SD +/- 0.03) in distinguishing malignant from benign images. The model had an accuracy of 94.2% (SD +/- 3.4) with a sensitivity and specificity of 74.4% (SD +/- 8.5) and 95.3% (SD +/- 3.3) respectively. Conclusion: It is feasible to use a weakly supervised deep learning approach to assess breast MRI images without the need for pixel-by-pixel segmentation yielding a high degree of specificity in lesion classification.
机构:
Changhua Christian Hosp, Dept Res, Mol Med Lab, Changhua 500, Taiwan
Fujian Polytech Normal Univ, Sch Big Data & Artificial Intelligence, Fuqing 350300, Peoples R ChinaChanghua Christian Hosp, Dept Res, Mol Med Lab, Changhua 500, Taiwan
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA
Eskreis-Winkler, Sarah
Onishi, Natsuko
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA
Univ Calif San Francisco, Dept Radiol, San Francisco, CA USAMem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA
Onishi, Natsuko
Pinker, Katja
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA
Pinker, Katja
Reiner, Jeffrey S.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA
Reiner, Jeffrey S.
Kaplan, Jennifer
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA
Kaplan, Jennifer
Morris, Elizabeth A.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA
Morris, Elizabeth A.
Sutton, Elizabeth J.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA