CNN for multiple sclerosis lesion segmentation: How many patients for a fully supervised method?

被引:2
作者
Fenneteau, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bourdon, Pascal [2 ,3 ,4 ]
Helbert, David [2 ,3 ,4 ]
Fernandez-Maloigne, Christine [2 ,3 ,4 ]
Habas, Christophe [3 ,4 ,5 ,7 ]
Guillevin, Remy [3 ,4 ,6 ,8 ]
机构
[1] Siemens Healthcare, St Denis, France
[2] Univ Poitiers, XLIM Lab, UMR CNRS 7252, Poitiers, France
[3] Univ Poitiers, Common Lab, I3M, CNRS Siemens, Poitiers, France
[4] Hosp Poitiers, Poitiers, France
[5] Quinze Vingts Hosp, Neuroimaging Dept, Paris, France
[6] CHU, Poitiers Univ Hosp, Poitiers, France
[7] Univ Versailles St Quentin, Versailles, France
[8] Univ Poitiers, UMR CNRS 7348, DACTIM MIS LMA Lab, Poitiers, France
来源
2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME) | 2021年
关键词
Segmentation; Deep Learning; Few examples; Multiple Sclerosis;
D O I
10.1109/ICABME53305.2021.9604859
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study we propose to improve an existing artificial neural network architecture, the MPU-net, which is designed for having very few parameters for multiple sclerosis lesion segmentation on magnetic resonance images. With this improved architecture we conducted a study to assess the influence of the number of training examples on the model performance and generalization. The question behind this study is: "With an appropriate architecture, how many patients do we need?". We evaluated 9 different adaptations of the MPU-net architecture. Then, after the selection of the best architecture we learned the model multiple times with different numbers of patients and assessed its performances. The addition of deep supervision, the reduction of number of convolutional layers and the addition of regularization layers produced a more stable and performant architecture. Learnings of selected model with only 10 exams delivered performances equivalent to learnings with 23 exams. So, in our experimental setup, it is possible to learn a performant model with only 10 fully annotated examples.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 50 条
[41]   Convolutional Neural Network Approach for Multiple Sclerosis Lesion Segmentation [J].
Messaoud, Nada Haj ;
Mansour, Asma ;
Ayari, Rim ;
Ben Abdallah, Asma ;
Aissi, Mouna ;
Frih, Mahbouba ;
Bedoui, Mohamed Hedi .
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2022, 2022, 13756 :540-548
[42]   A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis [J].
Cerri, Stefano ;
Puonti, Oula ;
Meier, Dominik S. ;
Wuerfel, Jens ;
Muhlau, Mark ;
Siebner, Hartwig R. ;
Van Leemput, Koen .
NEUROIMAGE, 2021, 225
[43]   An SPM12 extension for multiple sclerosis lesion segmentation [J].
Roura, Eloy ;
Oliver, Arnau ;
Cabezas, Mariano ;
Valverde, Sergi ;
Pareto, Deborah ;
Vilanova, Joan C. ;
Ramio-Torrenta, Lluis ;
Rovira, Alex ;
Llado, Xavier .
MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
[44]   SCANNER INVARIANT MULTIPLE SCLEROSIS LESION SEGMENTATION FROM MRI [J].
Aslani, Shahab ;
Murino, Vittorio ;
Dayan, Michael ;
Tam, Roger ;
Sona, Diego ;
Hamarneh, Ghassan .
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, :781-785
[45]   A fully automated pipeline for brain structure segmentation in multiple sclerosis [J].
Gonzalez-Villa, Sandra ;
Oliver, Arnau ;
Huo, Yuankai ;
Llado, Xavier ;
Landman, Bennett A. .
NEUROIMAGE-CLINICAL, 2020, 27
[46]   Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation [J].
Yoo, Youngjin ;
Brosch, Tom ;
Traboulsee, Anthony ;
Li, David K. B. ;
Tam, Roger .
MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2014), 2014, 8679 :117-124
[47]   Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation [J].
Yoo, Youngjin ;
Brosch, Tom ;
Traboulsee, Anthony ;
Li, David K.B. ;
Tam, Roger .
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8679 :117-124
[48]   Multi-Sequence Learning for Multiple Sclerosis Lesion Segmentation in Spinal Cord MRI [J].
Walsh, Ricky ;
Gaubert, Malo ;
Meuree, Cedric ;
Hussein, Burhan Rashid ;
Kerbrat, Anne ;
Casey, Romain ;
Combes, Benoit ;
Galassi, Francesca .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX, 2024, 15009 :478-487
[49]   Salient Central Lesion Volume: A Standardized Novel Fully Automated Proxy for Brain FLAIR Lesion Volume in Multiple Sclerosis [J].
Dwyer, Michael G. ;
Bergsland, Niels ;
Ramasamy, Deepa P. ;
Weinstock-Guttman, Bianca ;
Barnett, Michael H. ;
Wang, Chenyu ;
Tomic, Davorka ;
Silva, Diego ;
Zivadinov, Robert .
JOURNAL OF NEUROIMAGING, 2019, 29 (05) :615-623
[50]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78