CNN for multiple sclerosis lesion segmentation: How many patients for a fully supervised method?

被引:2
作者
Fenneteau, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bourdon, Pascal [2 ,3 ,4 ]
Helbert, David [2 ,3 ,4 ]
Fernandez-Maloigne, Christine [2 ,3 ,4 ]
Habas, Christophe [3 ,4 ,5 ,7 ]
Guillevin, Remy [3 ,4 ,6 ,8 ]
机构
[1] Siemens Healthcare, St Denis, France
[2] Univ Poitiers, XLIM Lab, UMR CNRS 7252, Poitiers, France
[3] Univ Poitiers, Common Lab, I3M, CNRS Siemens, Poitiers, France
[4] Hosp Poitiers, Poitiers, France
[5] Quinze Vingts Hosp, Neuroimaging Dept, Paris, France
[6] CHU, Poitiers Univ Hosp, Poitiers, France
[7] Univ Versailles St Quentin, Versailles, France
[8] Univ Poitiers, UMR CNRS 7348, DACTIM MIS LMA Lab, Poitiers, France
来源
2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME) | 2021年
关键词
Segmentation; Deep Learning; Few examples; Multiple Sclerosis;
D O I
10.1109/ICABME53305.2021.9604859
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study we propose to improve an existing artificial neural network architecture, the MPU-net, which is designed for having very few parameters for multiple sclerosis lesion segmentation on magnetic resonance images. With this improved architecture we conducted a study to assess the influence of the number of training examples on the model performance and generalization. The question behind this study is: "With an appropriate architecture, how many patients do we need?". We evaluated 9 different adaptations of the MPU-net architecture. Then, after the selection of the best architecture we learned the model multiple times with different numbers of patients and assessed its performances. The addition of deep supervision, the reduction of number of convolutional layers and the addition of regularization layers produced a more stable and performant architecture. Learnings of selected model with only 10 exams delivered performances equivalent to learnings with 23 exams. So, in our experimental setup, it is possible to learn a performant model with only 10 fully annotated examples.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 50 条
  • [31] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102
  • [32] A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network
    Karthik, R.
    Gupta, Utkarsh
    Jha, Ashish
    Rajalakshmi, R.
    Menaka, R.
    [J]. APPLIED SOFT COMPUTING, 2019, 84
  • [33] Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study
    Gabr, Refaat E.
    Coronado, Ivan
    Robinson, Melvin
    Sujit, Sheeba J.
    Datta, Sushmita
    Sun, Xiaojun
    Allen, William J.
    Lublin, Fred D.
    Wolinsky, Jerry S.
    Narayana, Ponnada A.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (10) : 1217 - 1226
  • [34] Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
    Nair, Tanya
    Precup, Doina
    Arnold, Douglas L.
    Arbel, Tal
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 655 - 663
  • [35] Medical Lesion Segmentation Using Deep Learning Technique for Multiple Sclerosis Disease
    Abhilasha Joshi
    K. K. Sharma
    [J]. SN Computer Science, 6 (5)
  • [36] Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
    Aslani, Shahab
    Dayan, Michael
    Storelli, Loredana
    Filippi, Massimo
    Murino, Vittorio
    Rocca, Maria A.
    Sona, Diego
    [J]. NEUROIMAGE, 2019, 196 : 1 - 15
  • [37] Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases
    Sander, Laura
    Pezold, Simon
    Andermatt, Simon
    Annann, Michael
    Meier, Dominik
    Wendebourg, Maria J.
    Sinnecker, Tim
    Radue, Ernst-Wilhelm
    Naegelin, Yvonne
    Granziera, Cristina
    Kappos, Ludwig
    Wuerfel, Jens
    Cattin, Philippe
    Schlaeger, Regina
    [J]. HUMAN BRAIN MAPPING, 2019, 40 (14) : 4091 - 4104
  • [38] A Context-Dependent CNN-Based Framework for Multiple Sclerosis Segmentation in MRI
    Placidi, Giuseppe
    Cinque, Luigi
    Foresti, Gian Luca
    Galassi, Francesca
    Mignosi, Filippo
    Nappi, Michele
    Polsinelli, Matteo
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2025, 35 (03)
  • [39] Multiple Sclerosis lesion segmentation using Active Contours model and adaptive outlier detection method
    Derraz, Foued
    Pinti, Antonio
    Peyrodie, Laurent
    Boussahla, Miloud
    Toumi, Hechmi
    Hautecoeur, Patrick
    [J]. PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 878 - 889
  • [40] Registration Based Data Augmentation for Multiple Sclerosis Lesion Segmentation
    Abolvardi, Ava Assadi
    Hamey, Len
    Ho-Shon, Kevin
    [J]. 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 408 - 412