CNN for multiple sclerosis lesion segmentation: How many patients for a fully supervised method?

被引:2
|
作者
Fenneteau, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bourdon, Pascal [2 ,3 ,4 ]
Helbert, David [2 ,3 ,4 ]
Fernandez-Maloigne, Christine [2 ,3 ,4 ]
Habas, Christophe [3 ,4 ,5 ,7 ]
Guillevin, Remy [3 ,4 ,6 ,8 ]
机构
[1] Siemens Healthcare, St Denis, France
[2] Univ Poitiers, XLIM Lab, UMR CNRS 7252, Poitiers, France
[3] Univ Poitiers, Common Lab, I3M, CNRS Siemens, Poitiers, France
[4] Hosp Poitiers, Poitiers, France
[5] Quinze Vingts Hosp, Neuroimaging Dept, Paris, France
[6] CHU, Poitiers Univ Hosp, Poitiers, France
[7] Univ Versailles St Quentin, Versailles, France
[8] Univ Poitiers, UMR CNRS 7348, DACTIM MIS LMA Lab, Poitiers, France
来源
2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME) | 2021年
关键词
Segmentation; Deep Learning; Few examples; Multiple Sclerosis;
D O I
10.1109/ICABME53305.2021.9604859
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study we propose to improve an existing artificial neural network architecture, the MPU-net, which is designed for having very few parameters for multiple sclerosis lesion segmentation on magnetic resonance images. With this improved architecture we conducted a study to assess the influence of the number of training examples on the model performance and generalization. The question behind this study is: "With an appropriate architecture, how many patients do we need?". We evaluated 9 different adaptations of the MPU-net architecture. Then, after the selection of the best architecture we learned the model multiple times with different numbers of patients and assessed its performances. The addition of deep supervision, the reduction of number of convolutional layers and the addition of regularization layers produced a more stable and performant architecture. Learnings of selected model with only 10 exams delivered performances equivalent to learnings with 23 exams. So, in our experimental setup, it is possible to learn a performant model with only 10 fully annotated examples.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 50 条
  • [1] Multiple Sclerosis Lesion Segmentation - A Survey of Supervised CNN-Based Methods
    Zhang, Huahong
    Oguz, Ipek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 11 - 29
  • [2] Investigating efficient CNN architecture for multiple sclerosis lesion segmentation
    Fenneteau, Alexandre
    Bourdon, Pascal
    Helbert, David
    Fernandez-Maloigne, Christine
    Habas, Christophe
    Guillevin, Remy
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (01)
  • [3] Multi-view longitudinal CNN for multiple sclerosis lesion segmentation
    Birenbaum, Ariel
    Greenspan, Hayit
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 : 111 - 118
  • [4] BOOST: A supervised approach for multiple sclerosis lesion segmentation
    Cabezas, Mariano
    Oliver, Arnau
    Valverde, Sergi
    Beltran, Brigitte
    Freixenet, Jordi
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 237 : 108 - 117
  • [5] Weakly Supervised Fully Convolutional Network for PET Lesion Segmentation
    Afshari, S.
    BenTaieb, A.
    Mirikharaji, Z.
    Hamarneh, G.
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [6] Multiple Sclerosis Brain Lesion Segmentation with Different Architecture Ensembles
    Tohidi, Pouria
    Remedios, Samuel W.
    Greenman, Danielle L.
    Shao, Muhan
    Han, Shuo
    Dewey, Blake E.
    Reinhold, Jacob C.
    Chou, Yi-Yu
    Pham, Dzung L.
    Prince, Jerry L.
    Carass, Aaron
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [7] Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning
    Liu, Dongnan
    Cabezas, Mariano
    Wang, Dongang
    Tang, Zihao
    Bai, Lei
    Zhan, Geng
    Luo, Yuling
    Kyle, Kain
    Ly, Linda
    Yu, James
    Shieh, Chun-Chien
    Nguyen, Aria
    Kandasamy Karuppiah, Ettikan
    Sullivan, Ryan
    Calamante, Fernando
    Barnett, Michael
    Ouyang, Wanli
    Cai, Weidong
    Wang, Chenyu
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [8] A Light Weighted Deep Learning Framework for Multiple Sclerosis Lesion Segmentation
    Ghosal, Palash
    Prasad, Pindi Krishna Chandra
    Nandi, Debashis
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 526 - 531
  • [9] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    Neuroradiology, 2015, 57 : 1031 - 1043
  • [10] A toolbox for multiple sclerosis lesion segmentation
    Roura, Eloy
    Oliver, Arnau
    Cabezas, Mariano
    Valverde, Sergi
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    NEURORADIOLOGY, 2015, 57 (10) : 1031 - 1043