DLSLA 3-D SAR Imaging via Sparse Recovery Through Combination of Nuclear Norm and Low-Rank Matrix Factorization

被引:4
作者
Gu, Tong [1 ]
Liao, Guisheng [1 ]
Li, Yachao [1 ]
Guo, Yifan [1 ]
Liu, Yongjun [1 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Imaging; Image reconstruction; Synthetic aperture radar; Sparse matrices; Radar polarimetry; Radar imaging; Geometry; Low-rank matrix factorization (LRMF); matrix completion (MC); nuclear norm; sparse recovery; vector reconstruction framework; THRESHOLDING ALGORITHM; RADAR; COMPLETION; DRIVE;
D O I
10.1109/TGRS.2021.3100715
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Downward-looking sparse linear array 3-D synthetic aperture radar (DLSLA 3-D SAR) cross-track dimensional imaging always suffers from incomplete observation which does not satisfy the Nyquist sampling theorem and leads to the failure of conventional 3-D frequency-domain methods. Although several sparse reconstruction-based methods have been presented to solve this problem, the basis mismatch issue in sparse reconstruction theory will degrade the image reconstruction performance. To address this issue, this article proposes a novel 3-D imaging method for DLSLA 3-D SAR, which provides another idea for 3-D imaging through sparse recovery. It utilizes recovered full-sampled data to achieve cross-track dimensional imaging instead of using the under-sampled data directly as before. The Along-track-Height plane imaging is first finished by the range-Doppler (RD) algorithm and motion error compensation. Then, an advanced nuclear norm and low-rank matrix factorization (NU-LRMF)-based matrix completion (MC) algorithm and a vector reconstruction framework are built to achieve accurate recovery of full-sampled data. Finally, the cross-track dimensional imaging is completed with recovered full-sampled data by geometric correction and beamforming. Moreover, a fast two-stage iteration strategy for NU-LRMF (TS-NU-LRMF) is also presented to accelerate convergence. The robustness and effectiveness of the proposed 3-D imaging method are verified by several numerical simulations and comparative studies based on both the complex 3-D ship model and the simulated 3-D distributed scenario.
引用
收藏
页数:13
相关论文
共 53 条
[1]   A COMPARISON OF RANGE-DOPPLER AND WAVE-NUMBER DOMAIN SAR FOCUSING ALGORITHMS [J].
BAMLER, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (04) :706-713
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[4]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[5]   The Power of Convex Relaxation: Near-Optimal Matrix Completion [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2053-2080
[6]   Matrix Completion With Noise [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :925-936
[7]   Exact Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) :717-772
[8]   Exact Low-rank Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
2008 46TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1-3, 2008, :806-+
[9]   A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment [J].
Casteel, Curtis H., Jr. ;
Gorham, LeRoy A. ;
Minardi, Michael J. ;
Scarborough, Steven M. ;
Naidu, Kiranmai D. ;
Majumder, Uttam K. .
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XIV, 2007, 6568
[10]   Experimental studies on circular SAR imaging in clutter using angular correlation function technique [J].
Chan, TK ;
Kuga, Y ;
Ishimaru, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05) :2192-2197