A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data

被引:106
作者
Kimball, Abigail K. [1 ]
Oko, Lauren M. [2 ]
Bullock, Bonnie L. [3 ]
Nemenoff, Raphael A. [3 ]
van Dyk, Linda F. [2 ]
Clambey, Eric T. [1 ]
机构
[1] Univ Colorado, Sch Med, Dept Anesthesiol, Anschurz Med Campus,12700 East 19th Ave,Box 112, Aurora, CO 80045 USA
[2] Univ Colorado, Dept Immunol & Microbiol, Anschurz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Dept Med, Anschurz Med Campus, Aurora, CO 80045 USA
基金
美国国家卫生研究院;
关键词
SINGLE-CELL DATA; HETEROGENEITY; HIERARCHY;
D O I
10.4049/jimmunol.1701494
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Mass cytometry has revolutionized the study of cellular and phenotypic diversity, significantly expanding the number of phenotypic and functional characteristics that can be measured at the single-cell level. This high-dimensional analysis platform has necessitated the development of new data analysis approaches. Many of these algorithms circumvent traditional approaches used in flow cytometric analysis, fundamentally changing the way these data are analyzed and interpreted. For the beginner, however, the large number of algorithms that have been developed, as well as the lack of consensus on best practices for analyzing these data, raise multiple questions: Which algorithm is the best for analyzing a dataset? How do different algorithms compare? How can one move beyond data visualization to gain new biological insights? In this article, we describe our experiences as recent adopters of mass cytometry. By analyzing a single dataset using five cytometry by time-of-flight analysis platforms (viSNE, SPADE, X-shift, PhenoGraph, and Citrus), we identify important considerations and challenges that users should be aware of when using these different methods and common and unique insights that can be revealed by these different methods. By providing annotated workflow and figures, these analyses present a practical guide for investigators analyzing high-dimensional datasets. In total, these analyses emphasize the benefits of integrating multiple cytometry by time-of-flight analysis algorithms to gain complementary insights into these high-dimensional datasets.
引用
收藏
页码:3 / 22
页数:20
相关论文
共 28 条
[1]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[2]   Visualization and cellular hierarchy inference of single-cell data using SPADE [J].
Anchang, Benedict ;
Hart, Tom D. P. ;
Bendall, Sean C. ;
Qiu, Peng ;
Bjornson, Zach ;
Linderman, Michael ;
Nolan, Garry P. ;
Plevritis, Sylvia K. .
NATURE PROTOCOLS, 2016, 11 (07) :1264-1279
[3]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[4]   Pathogenesis and Host Control of Gammaherpesviruses: Lessons from the Mouse [J].
Barton, Erik ;
Mandal, Pratyusha ;
Speck, Samuel H. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 29, 2011, 29 :351-397
[5]   High-dimensional analysis of the murine myeloid cell system [J].
Becher, Burkhard ;
Schlitzer, Andreas ;
Chen, Jinmiao ;
Mair, Florian ;
Sumatoh, Hermi R. ;
Teng, Karen Wei Weng ;
Low, Donovan ;
Ruedl, Christiane ;
Riccardi-Castagnoli, Paola ;
Poidinger, Michael ;
Greter, Melanie ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE IMMUNOLOGY, 2014, 15 (12) :1181-1189
[6]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[7]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[8]  
Brodie TM, 2017, CURR PROTOC IMMUNOL, V118
[9]   Automated identification of stratifying signatures in cellular subpopulations [J].
Bruggner, Robert V. ;
Bodenmiller, Bernd ;
Dill, David L. ;
Tibshirani, Robert J. ;
Nolan, Garry P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (26) :E2770-E2777
[10]   Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline [J].
Chen, Hao ;
Lau, Mai Chan ;
Wong, Michael Thomas ;
Newell, Evan W. ;
Poidinger, Michael ;
Chen, Jinmiao .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (09)