Research on named entity recognition of chinese electronic medical records based on multi-head attention mechanism and character-word information fusion

被引:7
|
作者
Zhang, Qinghui [1 ,2 ]
Wu, Meng [1 ]
Lv, Pengtao [1 ]
Zhang, Mengya [1 ]
Yang, Hongwei [1 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Univ Technol, Henan Key Lab Grain Photoelect Detect & Control, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Chinese electronic medical records; name entity recognition; character-word information fusion; multi-head attention;
D O I
10.3233/JIFS-212495
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the medical field, Named Entity Recognition (NER) plays a crucial role in the process of information extraction through electronic medical records and medical texts. To address the problems of long distance entity, entity confusion, and difficulty in boundary division in the Chinese electronic medical record NER task, we propose a Chinese electronic medical record NER method based on the multi-head attention mechanism and character-word fusion. This method uses a new character-word joint feature representation based on the pre-training model BERT and self-constructed domain dictionary, which can accurately divide the entity boundary and solve the impact of unregistered words. Subsequently, on the basis of the BiLSTM-CRF model, a multi-head attention mechanism is introduced to learn the dependency relationship between remote entities and entity information in different semantic spaces, which effectively improves the performance of the model. Experiments show that our models have better performance and achieves significant improvement compared to baselines. The specific performance is that the F1 value on the Chinese electronic medical record data set reaches 95.22%, which is 2.67% higher than the F1 value of the baseline model.
引用
收藏
页码:4105 / 4116
页数:12
相关论文
共 50 条
  • [21] Data Masking for Chinese Electronic Medical Records with Named Entity Recognition
    He, Tianyu
    Xu, Xiaolong
    Hu, Zhichen
    Zhao, Qingzhan
    Dai, Jianguo
    Dai, Fei
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 3657 - 3673
  • [22] Named Entity Recognition and Event Extraction in Chinese Electronic Medical Records
    Ma, Cheng
    Huang, Wenkang
    CCKS 2021 - EVALUATION TRACK, 2022, 1553 : 133 - 138
  • [23] A Hybrid Model for Named Entity Recognition on Chinese Electronic Medical Records
    Wang, Yu
    Sun, Yining
    Ma, Zuchang
    Gao, Lisheng
    Xu, Yang
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2021, 20 (02)
  • [24] Named Entity Recognition for Chinese Electronic Medical Records Based on Multitask and Transfer Learning
    Guo, Wenming
    Lu, Junda
    Han, Fang
    IEEE ACCESS, 2022, 10 : 77375 - 77382
  • [25] A dictionary-guided attention network for biomedical named entity recognition in Chinese electronic medical records
    Zhu, Zhichao
    Li, Jianqiang
    Zhao, Qing
    Akhtar, Faheem
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 231
  • [26] A Supervised Multi-Head Self-Attention Network for Nested Named Entity Recognition
    Xu, Yongxiu
    Huang, Heyan
    Feng, Chong
    Hu, Yue
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14185 - 14193
  • [27] Named Entity Recognition of Chinese Text Based on Attention Mechanism
    Shen, Tong-Ping
    Dumlao, Menchita
    Meng, Qing-Quan
    Zhan, Zhong-Hua
    Journal of Network Intelligence, 2023, 8 (02): : 505 - 518
  • [28] A multi-head adjacent attention-based pyramid layered model for nested named entity recognition
    Shengmin Cui
    Inwhee Joe
    Neural Computing and Applications, 2023, 35 : 2561 - 2574
  • [29] A multi-head adjacent attention-based pyramid layered model for nested named entity recognition
    Cui, Shengmin
    Joe, Inwhee
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2561 - 2574
  • [30] A weakly supervised method for named entity recognition of Chinese electronic medical records
    Meng Li
    Chunrong Gao
    Kuang Zhang
    Huajian Zhou
    Jing Ying
    Medical & Biological Engineering & Computing, 2023, 61 : 2733 - 2743