The Fan minimax inequality implies the Nash equilibrium theorem

被引:9
作者
Park, Sehie [1 ,2 ]
机构
[1] ROK, Natl Acad Sci, Seoul 137044, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
Abstract convex space; KKM principle; Fan's minimax inequality; Nash equilibrium; EXISTENCE;
D O I
10.1016/j.aml.2011.06.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that in an abstract convex space (E, D; Gamma), the partial KKM principle implies the Ky Fan minimax inequality, from which we deduce a generalization of the Nash equilibrium theorem. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2206 / 2210
页数:5
相关论文
共 50 条
  • [41] Genralized Fixed Point Theorem For Discontinuous Functions And It's Application In Nash Equilibrium For Discontinuous Games.
    Parhodeh, Hasan
    Babazadeh, Seyed Taghi
    MODERN JOURNAL OF LANGUAGE TEACHING METHODS, 2018, 8 (03): : 235 - 246
  • [42] On Nash-Stackelberg-Nash games under decision-dependent uncertainties: Model and equilibrium
    Zhang, Yunfan
    Liu, Feng
    Wang, Zhaojian
    Chen, Yue
    Feng, Shuanglei
    Wu, Qiuwei
    Hou, Yunhe
    AUTOMATICA, 2022, 142
  • [43] Generalized Nash equilibrium without common belief in rationality
    Bach, Christian W.
    Perea, Andres
    ECONOMICS LETTERS, 2020, 186
  • [44] Nash Equilibrium Problems of Polynomials
    Nie, Jiawang
    Tang, Xindong
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 1 - 26
  • [45] Nash equilibrium in discontinuous games
    Reny, Philip J.
    ECONOMIC THEORY, 2016, 61 (03) : 553 - 569
  • [46] Nash equilibrium in a game of calibration
    Glonti, O.
    Harremoes, P.
    Khechinashvili, Z.
    Topsoe, F.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2007, 51 (03) : 415 - 426
  • [47] RATIONALITY, COMPUTABILITY, AND NASH EQUILIBRIUM
    CANNING, D
    ECONOMETRICA, 1992, 60 (04) : 877 - 888
  • [48] An axiomatization of the Nash equilibrium concept
    Voorneveld, Mark
    GAMES AND ECONOMIC BEHAVIOR, 2019, 117 : 316 - 321
  • [49] NASH EQUILIBRIUM AND BISIMULATION INVARIANCE
    Gutierrez, Julian
    Harrenstein, Paul
    Perelli, Giuseppe
    Wooldridge, Michael
    LOGICAL METHODS IN COMPUTER SCIENCE, 2019, 15 (03)
  • [50] WEAK LOCAL NASH EQUILIBRIUM
    Biasi, Carlos
    Mendes Monis, Thais Fernanda
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 41 (02) : 409 - 419