Annealed Polycrystalline TiO2 Interlayer of the n-Si/TiO2/Ni Photoanode for Efficient Photoelectrochemical Water Splitting

被引:15
作者
Chuang, Chi-Huang [1 ]
Lai, Yung-Yu [1 ,4 ]
Hou, Cheng-Hung [1 ]
Cheng, Yuh-Jen [1 ,2 ,3 ]
机构
[1] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan
[2] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
[3] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 300, Taiwan
[4] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan
关键词
water splitting; photoelectrochemistry; photoanode; photovoltage; junction interlayer; thermal annealing; SILICON PHOTOANODES; OXIDATION; PERFORMANCE; JUNCTIONS; CATALYST; FILMS; SI;
D O I
10.1021/acsaem.0c00319
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High photovoltage generation from a photoelectrode is important for efficient solar-driven water splitting. Here, we report a thermal treatment process that greatly enhances photovoltage generation from an n-Si/TiO2/Ni photoanode. By selectively annealing the TiO2 interlayer, the photoanode generates a high photovoltage of 570 mV, which is very competitive as compared with photovoltages produced using other similar metal-insulator-semiconductor structures with earth-abundant metal catalysts. Different annealing conditions and junction layer thicknesses were systematically investigated. It is found that the optimal annealing temperature occurs between 500 and 600 degrees C. Within this temperature range, the deposited amorphous Ti is converted into polycrystalline anatase phase TiO2. The optimal annealing time scales linearly with TiO2 thickness and inversely with annealing temperature. The large photovoltage generation is attributed to the reduced defect states and improved junction barrier height by the annealed TiO2 interlayer. This study demonstrates that thermal annealing offers an attractive approach to modify the TiO2 interlayer material's properties for photovoltage optimization.
引用
收藏
页码:3902 / 3908
页数:7
相关论文
共 34 条
[1]   Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts [J].
Agrawal, Ashish ;
Lin, Joyce ;
Barth, Michael ;
White, Ryan ;
Zheng, Bo ;
Chopra, Saurabh ;
Gupta, Shashank ;
Wang, Ke ;
Gelatos, Jerry ;
Mohney, Suzanne E. ;
Datta, Suman .
APPLIED PHYSICS LETTERS, 2014, 104 (11)
[2]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[3]   Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation [J].
Digdaya, Ibadillah A. ;
Adhyaksa, Gede W. P. ;
Trzesniewski, Bartek J. ;
Garnett, Erik C. ;
Smith, Wilson A. .
NATURE COMMUNICATIONS, 2017, 8
[4]   WATER SPLITTING Catalyst or spectator? [J].
Gamelin, Daniel R. .
NATURE CHEMISTRY, 2012, 4 (12) :965-967
[5]   Tunnel barrier photoelectrodes for solar water splitting [J].
Guo, Lian ;
Hung, David ;
Wang, Weigang ;
Shen, Weifeng ;
Zhu, Leyi ;
Chien, Chia-Ling ;
Searson, Peter C. .
APPLIED PHYSICS LETTERS, 2010, 97 (06)
[6]   Review of the anatase to rutile phase transformation [J].
Hanaor, Dorian A. H. ;
Sorrell, Charles C. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (04) :855-874
[7]  
Hill JC, 2015, NAT MATER, V14, P1150, DOI [10.1038/NMAT4408, 10.1038/nmat4408]
[8]   Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation [J].
Hu, Shu ;
Shaner, Matthew R. ;
Beardslee, Joseph A. ;
Lichterman, Michael ;
Brunschwig, Bruce S. ;
Lewis, Nathan S. .
SCIENCE, 2014, 344 (6187) :1005-1009
[9]   Photocharged Water Splitting Employing a Nickel(II) Tellurium Oxide (Photo)anode in Alkaline Medium [J].
Iqbal, M. Z. ;
Carleschi, E. ;
Doyle, B. P. ;
Kriek, R. J. .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (11) :8125-8137
[10]   High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation [J].
Kenney, Michael J. ;
Gong, Ming ;
Li, Yanguang ;
Wu, Justin Z. ;
Feng, Ju ;
Lanza, Mario ;
Dai, Hongjie .
SCIENCE, 2013, 342 (6160) :836-840