A Uniqueness Criterion for Unbounded Solutions to the Vlasov-Poisson System

被引:26
作者
Miot, Evelyne [1 ]
机构
[1] Ecole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
关键词
3; DIMENSIONS; PROPAGATION; STABILITY; REGULARITY; MOMENTS; EXISTENCE; EQUATIONS; FIELDS;
D O I
10.1007/s00220-016-2707-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove uniqueness for the Vlasov-Poisson system in two and three dimensions under the condition that the L-p norms of the macroscopic density grow at most linearly with respect to p. This allows for solutions with logarithmic singularities. We provide explicit examples of initial data that fulfill the uniqueness condition and that exhibit a logarithmic blow-up. In the gravitational two-dimensional case, such states are intimately related to radially symmetric steady solutions of the system. Our method relies on the Lagrangian formulation for the solutions, exploiting the second-order structure of the corresponding ODE.
引用
收藏
页码:469 / 482
页数:14
相关论文
共 23 条
[1]  
Ambrosio L, 2008, LECT NOTES UNIONE MA, V5, P3
[2]  
[Anonymous], 2012, Mathematical theory of incompressible nonviscous fluids
[3]  
Arsenev A A., 1975, USSR Comput. Math. Math. Phys, V15, P131, DOI [10.1016/0041-5553(75)90141-X, DOI 10.1016/0041-5553(75)90141-X]
[4]   LINEAR-STABILITY OF STATIONARY SOLUTIONS OF THE VLASOV-POISSON SYSTEM IN 3 DIMENSIONS [J].
BATT, J ;
MORRISON, PJ ;
REIN, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 130 (02) :163-182
[5]   On the Attractive Plasma-Charge System in 2-d [J].
Caprino, S. ;
Marchioro, C. ;
Miot, E. ;
Pulvirenti, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (07) :1237-1272
[6]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[7]   Stability for the gravitational Vlasov-Poisson system in dimension two [J].
Dolbeault, J. ;
Fernandez, J. ;
Sanchez, O. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (10) :1425-1449
[8]  
Duoandikoetxea J., 2001, FOURIER ANAL GSM
[9]   Regularity and propagation of moments in some nonlinear Vlasov systems [J].
Gasser, I ;
Jabin, PE ;
Perthame, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :1259-1273
[10]   A non-variational approach to nonlinear stability in stellar dynamics applied to the King model [J].
Guo, Yan ;
Rein, Gerhard .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :489-509