A New Evolutionary Parsing Algorithm for LTAG

被引:0
|
作者
Menon, Vijay Krishna [1 ]
Soman, K. P. [2 ]
机构
[1] Ctr Computat Engn & Networking CEN, Amrita Sch Engn, Coimbatore, Tamil Nadu, India
[2] Amrita Univ, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
来源
PROGRESS IN INTELLIGENT COMPUTING TECHNIQUES: THEORY, PRACTICE, AND APPLICATIONS, VOL 1 | 2018年 / 518卷
关键词
Tree adjoining grammar; Evolutionary parsing; Genetic algorithm; Genetic operators; NLP; Syntax analysis; Derivation; Parse tree; Lexicalisation; Crossover; Mutation;
D O I
10.1007/978-981-10-3373-5_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tree adjoining grammars (TAGs) are mildly context-sensitive psycholinguistic formalisms that are hard to parse. All standard TAG parsers have a worst-case complexity of O(n(6)), despite being one of the most linguistically relevant grammars. For comprehensive syntax analysis, especially of ambiguous natural language constructs, most TAG parsers will have to run exhaustively, bringing them close to worst-case runtimes, in order to derive all possible parse trees. In this paper, we present a new and intuitive genetic algorithm, a few fitness functions and an implementation strategy for lexicalised-TAG parsing, so that we might get multiple ambiguous derivations efficiently.
引用
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [41] An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering
    McNicholas, Sharon M.
    McNicholas, Paul D.
    Ashlock, Daniel A.
    JOURNAL OF CLASSIFICATION, 2021, 38 (02) : 264 - 279
  • [42] A destructive evolutionary algorithm process
    Joe Sullivan
    Conor Ryan
    Soft Computing, 2011, 15 : 95 - 102
  • [43] An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering
    Sharon M. McNicholas
    Paul D. McNicholas
    Daniel A. Ashlock
    Journal of Classification, 2021, 38 : 264 - 279
  • [44] An Aphid Inspired Evolutionary Algorithm
    Cilliers, Michael
    Coulter, Duncan
    ADVANCES IN NATURE AND BIOLOGICALLY INSPIRED COMPUTING, 2016, 419 : 293 - 303
  • [45] Multiple circle detection in images: a simple evolutionary algorithm approach and a new benchmark of images
    Miguel R. González
    Miguel E. Martínez
    María Cosío-León
    Humberto Cervantes
    Carlos A. Brizuela
    Pattern Analysis and Applications, 2021, 24 : 1583 - 1603
  • [46] A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks
    Abdulateef, Amenah H.
    Attea, Bara'a A.
    Rashid, Ahmed N.
    Al-Ani, Mayyadah
    APPLIED SOFT COMPUTING, 2018, 73 : 1004 - 1025
  • [47] A new real-coded quantum-inspired evolutionary algorithm for continuous optimization
    Talbi, Hichem
    Draa, Amer
    APPLIED SOFT COMPUTING, 2017, 61 : 765 - 791
  • [48] Multiple circle detection in images: a simple evolutionary algorithm approach and a new benchmark of images
    Gonzalez, Miguel R.
    Martinez, Miguel E.
    Cosio-Leon, Maria
    Cervantes, Humberto
    Brizuela, Carlos A.
    PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (04) : 1583 - 1603
  • [49] A NEW MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR OPTIMIZING THE AERODYNAMIC DESIGN OF HAWT ROTOR
    Alfayyadh, Ekhlas M.
    Bakhy, Sadeq H.
    PROCEEDINGS OF THE ASME 12TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS - 2014, VOL 2, 2014,
  • [50] Conformance Evaluation of Genetic Algorithm for Evolutionary Area Search of Canonical Model
    V. K. Ivanov
    B. V. Palyukh
    A. N. Sotnikov
    Lobachevskii Journal of Mathematics, 2019, 40 : 1799 - 1808