Haar wavelet method for solution of variable order linear fractional integro-differential equations

被引:11
作者
Amin, Rohul [1 ]
Shah, Kamal [2 ,3 ]
Ahmad, Hijaz [4 ,5 ]
Ganie, Abdul Hamid [6 ]
Abdel-Aty, Abdel-Haleem [7 ,8 ]
Botmart, Thongchai [9 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25120, Pakistan
[2] Univ Malakand, Dept Math, Khyber Pakhtunkhwa, Pakistan
[3] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[4] Istanbul Ticaret Univ, Informat Technol Applicat & Res Ctr, TR-34445 Istanbul, Turkey
[5] Istanbul Ticaret Univ, Fac Humanities & Social Sci, Dept Math, TR-34445 Istanbul, Turkey
[6] Saudi Elect Univ Abha Male, Coll Sci & Theoret Studies, Basic Sci Dept, Abha 61421, Saudi Arabia
[7] Univ Bisha, Coll Sci, Dept Phys, Bisha 61922, Saudi Arabia
[8] Al Azhar Univ, Fac Sci, Phys Dept, Assiut 71524, Egypt
[9] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
variable-order fractional calculus; fixed-point theory; Gauss elimination method; Haar wavelet; numerical approximation; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS;
D O I
10.3934/math.2022301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.
引用
收藏
页码:5431 / 5443
页数:13
相关论文
共 37 条
[1]   Solution of third order linear and nonlinear boundary value problems of integro-differential equations using Haar Wavelet method [J].
Alqarni, M. M. ;
Amin, Rohul ;
Shah, Kamal ;
Nazir, Shah ;
Awais, Muhammad ;
Alshehri, Nawal A. ;
Mahmoud, Emad E. .
RESULTS IN PHYSICS, 2021, 25
[2]   Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method [J].
Amin, Rohul ;
Ahmad, Hijaz ;
Shah, Kamal ;
Hafeez, M. Bilal ;
Sumelka, W. .
CHAOS SOLITONS & FRACTALS, 2021, 151
[3]   A computational algorithm for the numerical solution of fractional order delay differential equations [J].
Amin, Rohul ;
Shah, Kamal ;
Asif, Muhammad ;
Khan, Imran .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
[4]   Haar wavelet method for solution of distributed order time-fractional differential equations [J].
Amin, Rohul ;
Alshahrani, B. ;
Mahmoud, Mona ;
Abdel-Aty, Abdel-Haleem ;
Shah, Kamal ;
Deebani, Wejdan .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (03) :3295-3303
[5]   An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet [J].
Amin, Rohul ;
Shah, Kamal ;
Asif, Muhammad ;
Khan, Imran ;
Ullah, Faheem .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
[6]   Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications [J].
Amin, Rohul ;
Nazir, Shah ;
Garcia-Magarino, Ivan .
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (02)
[7]   Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet [J].
Aziz, Imran ;
Amin, Rohul .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (23-24) :10286-10299
[8]   New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets [J].
Aziz, Imran ;
Siraj-ul-Islam .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 :333-345
[9]   Haar wavelet method for solving lumped and distributed-parameter systems [J].
Chen, CF ;
Hsiao, CH .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (01) :87-94
[10]   Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets [J].
Chen, Yi-Ming ;
Wei, Yan-Qiao ;
Liu, Da-Yan ;
Yu, Hao .
APPLIED MATHEMATICS LETTERS, 2015, 46 :83-88