共 50 条
Adipose-Derived Mesenchymal Stem Cell Chondrospheroids Cultured in Hypoxia and a 3D Porous Chitosan/Chitin Nanocrystal Scaffold as a Platform for Cartilage Tissue Engineering
被引:46
|作者:
Zubillaga, Veronica
[1
]
Alonso-Varona, Ana
[1
]
Fernandes, Susana C. M.
[2
]
Salaberria, Asier M.
[3
]
Palomares, Teodoro
[4
]
机构:
[1] Univ Basque Country, Fac Med & Nursey, Dept Cell Biol & Histol, UPV EHU, B Sarriena S-N, Leioa 48940, Spain
[2] Univ Pau & Pays Adour, Inst Analyt Sci & Physicochem Environm & Mat, E2S UPPA, CNRS, F-64600 Anglet, France
[3] Univ Basque Country, Polytech Sch, Dept Chem & Environm Engn, Biorefinery Proc Res Grp,UPV EHU, Pza Europa 1, Donostia San Sebastian 20018, Spain
[4] Univ Basque Country, Fac Med, Dept Surg Radiol & Phys Med, UPV EHU, B Sarriena S-N, Leioa 48940, Spain
关键词:
cartilage tissue engineering;
adipose tissue-derived mesenchymal stem cell spheroids;
Hypoxia;
3D porous chitosan/chitin nanocrystal scaffold;
BONE-MARROW;
CHONDROGENIC DIFFERENTIATION;
ARTICULAR-CARTILAGE;
CHITIN NANOFIBERS;
STROMAL CELLS;
HYDROGELS;
GROWTH;
CHONDROCYTES;
VALIDATION;
SPHEROIDS;
D O I:
10.3390/ijms21031004
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Articular cartilage degeneration is one of the most common causes of pain and disability in middle-aged and older people. Tissue engineering (TE) has shown great therapeutic promise for this condition. The design of cartilage regeneration constructs must take into account the specific characteristics of the cartilaginous matrix, as well as the avascular nature of cartilage and its cells' peculiar arrangement in isogenic groups. Keeping these factors in mind, we have designed a 3D porous scaffold based on genipin-crosslinked chitosan/chitin nanocrystals for spheroid chondral differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) induced in hypoxic conditions. First, we demonstrated that, under low oxygen conditions, the chondrospheroids obtained express cartilage-specific markers including collagen type II (COL2A1) and aggrecan, lacking expression of osteogenic differentiation marker collagen type I (COL1A2). These results were associated with an increased expression of hypoxia-inducible factor 1 alpha, which positively directs COL2A1 and aggrecan expression. Finally, we determined the most suitable chondrogenic differentiation pattern when hASC spheroids were seeded in the 3D porous scaffold under hypoxia and obtained a chondral extracellular matrix with a high sulphated glycosaminoglycan content, which is characteristic of articular cartilage. These findings highlight the potential use of such templates in cartilage tissue engineering.
引用
收藏
页数:17
相关论文