Contrastive Learning with Heterogeneous Graph Attention Networks on Short Text Classification

被引:7
作者
Sun, Zhongtian [1 ]
Harit, Anoushka [1 ]
Cristea, Alexandra, I [1 ]
Yu, Jialin [1 ]
Shi, Lei [1 ]
Al Moubayed, Noura [1 ]
机构
[1] Univ Durham, Dept Comp Sci, Durham, England
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
Semi-supervised learning; graph neural network; contrastive learning; text classification;
D O I
10.1109/IJCNN55064.2022.9892257
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks (GNNs) have attracted extensive interest in text classification tasks due to their expected superior performance in representation learning. However, most existing studies adopted the same semi-supervised learning setting as the vanilla Graph Convolution Network (GCN), which requires a large amount of labelled data during training and thus is less robust when dealing with large-scale graph data with fewer labels. Additionally, graph structure information is normally captured by direct information aggregation via network schema and is highly dependent on correct adjacency information. Therefore, any missing adjacency knowledge may hinder the performance. Addressing these problems, this paper thus proposes a novel method to learn a graph structure, NC-HGAT, by expanding a state-of-the-art self-supervised heterogeneous graph neural network model (HGAT) with simple neighbour contrastive learning. The new NC-HGAT considers the graph structure information from heterogeneous graphs with multi-layer perceptrons (MLPs) and delivers consistent results, despite the corrupted neighbouring connections. Extensive experiments have been implemented on four benchmark short-text datasets. The results demonstrate that our proposed model NC-HGAT significantly outperforms state-of-the-art methods on three datasets and achieves competitive performance on the remaining dataset.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] HGAT: Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification
    Yang, Tianchi
    Hu, Linmei
    Shi, Chuan
    Ji, Houye
    Li, Xiaoli
    Nie, Liqiang
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2021, 39 (03)
  • [2] Commonsense knowledge powered heterogeneous graph attention networks for semi-supervised short text classification
    Wu, Mingqiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [3] Heterogeneous Graph Contrastive Learning with Attention Mechanism for Recommendation
    Li, Ruxing
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (10) : 1930 - 1938
  • [4] Two-level attention mechanism with contrastive learning for heterogeneous graph representation learning
    Moradi, Mahnaz
    Moradi, Parham
    Faroughi, Azadeh
    Jalili, Mahdi
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 273
  • [5] Contrastive Graph Convolutional Networks with adaptive augmentation for text classification
    Yang, Yintao
    Miao, Rui
    Wang, Yili
    Wang, Xin
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [6] ADCL: An attention feature enhancement network based on adversarial contrastive learning for short text classification
    Su, Shun
    Shao, Dangguo
    Ma, Lei
    Yi, Sanli
    Yang, Ziwei
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [7] Heterogeneous Graph Neural Network for Short Text Classification
    Zhang, Bingjie
    He, Qing
    Zhang, Damin
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [8] Graph-based Text Classification by Contrastive Learning with Text-level Graph Augmentation
    Li, Ximing
    Wang, Bing
    Wang, Yang
    Wang, Meng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [9] HeteGCN: Heterogeneous Graph Convolutional Networks for Text Classification
    Ragesh, Rahul
    Sellamanickam, Sundararajan
    Iyer, Arun
    Bairi, Ramakrishna
    Lingam, Vijay
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 860 - 868
  • [10] Deep Clustering by Graph Attention Contrastive Learning
    Liu, Ming
    Liu, Cong
    Fu, Xiaoyuan
    Wang, Jing
    Li, Jiankun
    Qi, Qi
    Liao, Jianxin
    ELECTRONICS, 2023, 12 (11)