Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network

被引:47
作者
Jian, Xianzhong [1 ]
Li, Wenlong [2 ]
Guo, Xuguang [1 ]
Wang, Ruzhi [3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
[3] Beijing Univ Technol, Sch Mat Sci & Engn, Beijing 100020, Peoples R China
基金
中国国家自然科学基金;
关键词
motor bearings; fault diagnosis; deep learning; one-dimensional fusion neural network; D-S evidence theory; ROLLING ELEMENT BEARING; MACHINES; CLASSIFICATION;
D O I
10.3390/s19010122
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning has been an important topic in fault diagnosis of motor bearings, which can avoid the need for extensive domain expertise and cumbersome artificial feature extraction. However, existing neural networks have low fault recognition rates and low adaptability under variable load conditions. In order to solve these problems, we propose a one-dimensional fusion neural network (OFNN), which combines Adaptive one-dimensional Convolution Neural Networks with Wide Kernel (ACNN-W) and Dempster-Shafer (D-S) evidence theory. Firstly, the original vibration time-domain signals of a motor bearing acquired by two sensors are resampled. Then, four frameworks of ACNN-W optimized by RMSprop are utilized to learn features adaptively and pre-classify them with Softmax classifiers. Finally, the D-S evidence theory is used to comprehensively determine the class vector output by the Softmax classifiers to achieve fault detection of the bearing. The proposed method adapts to different load conditions by incorporating complementary or conflicting evidences from different sensors through experiments on the Case Western Reserve University (CWRU) motor bearing database. Experimental results show that the proposed method can effectively enhance the cross-domain adaptive ability of the model and has a better diagnostic accuracy than other existing experimental methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Fault Diagnosis of Bearings under Multiple Operating Conditions Based on Modular Neural Network
    Li, Sijie
    Zhou, Funa
    Zhang, Zhiqiang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3482 - 3487
  • [32] Fault detection and recognition of multivariate process based on feature learning of one-dimensional convolutional neural network and stacked denoised autoencoder
    Zhang, Chengyi
    Yu, Jianbo
    Wang, Shijin
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (08) : 2426 - 2449
  • [33] Fault diagnosis of bearings based on an improved lightweight convolution neural network
    Li, Qiankun
    Cui, Mingliang
    Wang, Youqing
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 202 - 207
  • [34] Fault diagnosis of rolling bearings with recurrent neural network based autoencoders
    Liu, Han
    Zhou, Jianzhong
    Zheng, Yang
    Jiang, Wei
    Zhang, Yuncheng
    ISA TRANSACTIONS, 2018, 77 : 167 - 178
  • [35] Fault Diagnosis of Fusion Power Station Based on Neural Network
    Chen, Hui
    Wang, Junjia
    Hu, Hejun
    Huang, Yiyun
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, : 3405 - 3411
  • [36] Study of the Fault Diagnosis Based on Wavelet and Neural Network for the Motor
    Shao, Keyong
    Han, Lijuan
    Wang, Xinmin
    Zhang, Fengwu
    Qian, Kun
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING II, PTS 1-3, 2013, 433-435 : 483 - +
  • [37] Sparse one-dimensional convolutional neural network-based feature learning for fault detection and diagnosis in multivariable manufacturing processes
    Yu, Jianbo
    Zhang, Chengyi
    Wang, Shijin
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06) : 4343 - 4366
  • [38] One-Dimensional Convolutional Neural Networks Based on Exponential Linear Units for Bearing Fault Diagnosis
    Kong, Hanyang
    Yang, Qingyu
    Zhang, Zhiqiang
    Nai, Yongqiang
    An, Dou
    Liu, Yibo
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1052 - 1057
  • [39] Wavelet Neural Network Based Fault Diagnosis of Asynchronous Motor
    Hu, Bo
    Tao, Wen-hua
    Cui, Bo
    Bai, Yi-tong
    Yin, Xu
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3260 - 3263
  • [40] Rolling Bearing Fault Diagnosis Based on One-Dimensional Dilated Convolution Network With Residual Connection
    Liang, Haopeng
    Zhao, Xiaoqiang
    IEEE ACCESS, 2021, 9 : 31078 - 31091