Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network

被引:47
作者
Jian, Xianzhong [1 ]
Li, Wenlong [2 ]
Guo, Xuguang [1 ]
Wang, Ruzhi [3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
[3] Beijing Univ Technol, Sch Mat Sci & Engn, Beijing 100020, Peoples R China
基金
中国国家自然科学基金;
关键词
motor bearings; fault diagnosis; deep learning; one-dimensional fusion neural network; D-S evidence theory; ROLLING ELEMENT BEARING; MACHINES; CLASSIFICATION;
D O I
10.3390/s19010122
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning has been an important topic in fault diagnosis of motor bearings, which can avoid the need for extensive domain expertise and cumbersome artificial feature extraction. However, existing neural networks have low fault recognition rates and low adaptability under variable load conditions. In order to solve these problems, we propose a one-dimensional fusion neural network (OFNN), which combines Adaptive one-dimensional Convolution Neural Networks with Wide Kernel (ACNN-W) and Dempster-Shafer (D-S) evidence theory. Firstly, the original vibration time-domain signals of a motor bearing acquired by two sensors are resampled. Then, four frameworks of ACNN-W optimized by RMSprop are utilized to learn features adaptively and pre-classify them with Softmax classifiers. Finally, the D-S evidence theory is used to comprehensively determine the class vector output by the Softmax classifiers to achieve fault detection of the bearing. The proposed method adapts to different load conditions by incorporating complementary or conflicting evidences from different sensors through experiments on the Case Western Reserve University (CWRU) motor bearing database. Experimental results show that the proposed method can effectively enhance the cross-domain adaptive ability of the model and has a better diagnostic accuracy than other existing experimental methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Research on fault diagnosis method of electromechanical transmission system based on one-dimensional convolutional neural network with variable learning rate
    Liu, Liwu
    Chen, Guoyan
    Yu, Feifei
    Du, Canyi
    Gong, Yongkang
    Yuan, Huijin
    Dai, Zhenni
    JOURNAL OF VIBROENGINEERING, 2023, 25 (05) : 873 - 894
  • [22] Bearing Fault Diagnosis Based on Parameter-Optimized Variational Mode Extraction and an Improved One-Dimensional Convolutional Neural Network
    Zhang, Dongliang
    Tao, Hanming
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [23] Multichannel one-dimensional convolutional neural network-based feature learning for fault diagnosis of industrial processes
    Jianbo Yu
    Chengyi Zhang
    Shijin Wang
    Neural Computing and Applications, 2021, 33 : 3085 - 3104
  • [24] Fault Diagnosis of Accessories for the Low Voltage Conventional Circuit Breaker Based on One-Dimensional Convolutional Neural Network
    Sun S.
    Li Q.
    Du T.
    Cui J.
    Wang J.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2020, 35 (12): : 2562 - 2573
  • [25] Fault Diagnosis for Aircraft Hydraulic Systems via One-Dimensional Multichannel Convolution Neural Network
    Shen, Kenan
    Zhao, Dongbiao
    ACTUATORS, 2022, 11 (07)
  • [26] A One-Dimensional Depthwise Separable Convolutional Neural Network for Bearing Fault Diagnosis Implemented on FPGA
    Liang, Yu-Pei
    Chen, Hao
    Chung, Ching-Che
    SENSORS, 2024, 24 (23)
  • [27] A novel one-dimensional convolutional neural network with parallel attention for fault diagnosis of rigid guides
    Wang, Yongzhen
    He, Jiacong
    Zhang, Xiaoguang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (08)
  • [28] Fault Diagnosis of Bearings Based on Multi-Sensor Information Fusion and 2D Convolutional Neural Network
    Wang, Jiaxing
    Wang, Dazhi
    Wang, Sihan
    Li, Wenhui
    Song, Keling
    IEEE ACCESS, 2021, 9 (09): : 23717 - 23725
  • [29] Fault diagnosis of bearings based on deep separable convolutional neural network and spatial dropout
    Zhang, Jiqiang
    Kong, Xiangwei
    LI, Xueyi
    Hu, Zhiyong
    Cheng, Liu
    Yu, Mingzhu
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (10) : 301 - 312
  • [30] Physics-Based Convolutional Neural Network for Fault Diagnosis of Rolling Element Bearings
    Sadoughi, Mohammadkazem
    Hu, Chao
    IEEE SENSORS JOURNAL, 2019, 19 (11) : 4181 - 4192