A Two-Level Preconditioned Conjugate-Gradient Method in Distorted and Structured Grids

被引:1
作者
He, Qiaolin [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
Precondition; conjugate gradient; multigrid; finite element; ALGEBRAIC MULTIGRID METHOD;
D O I
10.4208/aamm.10-m11133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new two-level preconditioned C-G method which uses the quadratic smoothing and the linear correction in distorted but topologically structured grid. The CPU time of this method is less than that of the multigrid preconditioned C-G method (MGCG) using the quadratic element, but their accuracy is almost the same. Numerical experiments and eigenvalue analysis are given and the results show that the proposed two-level preconditioned method is efficient.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 1973, LECT NOTES PHYS
[2]  
Bakhvalov N.S., 1966, USSR COMP MATH MATH, V6, P101, DOI [DOI 10.1016/0041-5553(66)90118-2, 10.1016/0041-5553(66)90118-2]
[3]   SHARP ESTIMATES FOR MULTIGRID RATES OF CONVERGENCE WITH GENERAL SMOOTHING AND ACCELERATION [J].
BANK, RE ;
DOUGLAS, CC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :617-633
[4]  
BRAESS D., 1986, LECT NOTES MATH, V1228, P52
[5]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[6]  
Fedorenko R.P., 1962, U.S.S.R. Comput. Math. and Math. Phys, V1, P1092, DOI 10.1016/0041-5553(62)90031-9
[7]  
Fedorenko RP., 1964, J Comput Math Math Phys, V4, P227, DOI [10.1016/0041-5553(64)90253-8, DOI 10.1016/0041-5553(64)90253-8]
[8]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0
[9]  
Hackbusch W., 1982, LECT NOTES MATH
[10]  
HACKBUSCH W., 1977, 7717 U KOLN I ANG MA